Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1: ta thay \(a^2=b^2+c^2;b^2=2c^2-2013\)vào Q ta được:
Q= \(5a^2-7b^2-c^2=5\left(a^2+b^2\right)-7b^2-c^2=-2b^2+4c^2\)
=\(-2\left(2c^2-2013\right)+4c^2=4026\)
Đặt a^2/c=x;b^2/a=y;c^2/b=z
a^2/c*b^2/a*c^2/y=x.y.z=1
c/a^2=; a/b^2=; a/c^2=
Ta có: x+y+z=1/x+1/y+1/z
x+y+z=xy+yz+zx/xyz=xy+xz+yz(1)
Lại có: (x-1)(y-1)(z-1)
=xyz-xy-yz-zx+x+y+z-1
=1-x-y-z+x+y+z-1 ( Do xyz=1 và xy+yz+zx=x+y+z)
=0
x-1, y-1 ,z-1 ít nhất 1 số bằng 0
Nếu x-1=0 x=1 a^2/c=1
a^2=c
Vậy....
1. Phân tích đa thức thành nhân tử:
a) \(x^2-x-6\)
\(=x^2-3x+2x-6\)
\(=x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x-3\right)\left(x+2\right)\)
b) \(x^4+4x^2-5\)
\(=x^4-x^2+5x^2-5\)
\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
c) \(x^3-19x-30\)
\(=x^3+5x^2+6x-5x^2-25x-30\)
\(=x\left(x^2+5x+6\right)-5\left(x^2+5x+6\right)\)
\(=\left(x^2+5x+6\right)\left(x-5\right)\)
\(=\left(x^2+2x+3x+6\right)\left(x-5\right)\)
\(=\left[x\left(x+2\right)+3\left(x+2\right)\right]\left(x-5\right)\)
\(=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)
3. Phân tích thành nhân tử:
c) \(81x^4+4\)
\(=\left(9x^2\right)^2+2.9x^2.2+2^2-36x^2\)
\(=\left(9x^2+2\right)^2-\left(6x\right)^2\)
\(=\left(9x^2+2-6x\right)\left(9x^2+2+6x\right)\)
d) \(x^5+x+1\)
\(=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right) \left(x^3-x^2+1\right)\)
1. Ta có : a2 = b2 + c2 và b2 = 2c2 - 2013
\(\Leftrightarrow\)a2 - b2 - c2 = 0 và b2 - 2c2 = -2013
Do đó : M = 5a2 - 7b2 - c2
= ( 5a2 - 5b2 - 5c2 ) = -2b2 + 4c2
= 5 . ( a2 - b2 - c2 ) - 2 . ( b2 - 2c2 )
= 0 - 2 . ( -2013 ) = 4026
em ko biết làm bài lớp 7. sorry
Em tham khảo tại link dưới đây:
Câu hỏi của Hoàng Nguyễn Quỳnh Khanh - Toán lớp 8 - Học toán với OnlineMath