K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2015

Đặt a^2/c=x;b^2/a=y;c^2/b=z

 a^2/c*b^2/a*c^2/y
=x.y.z=1

c/a^2=; a/b^2=; a/c^2=

Ta có: x+y+z=1/x+1/y+1/z

x+y+z=xy+yz+zx/xyz=xy+xz+yz(1)

Lại có: (x-1)(y-1)(z-1)

=xyz-xy-yz-zx+x+y+z-1

=1-x-y-z+x+y+z-1 ( Do xyz=1 và xy+yz+zx=x+y+z)
=0
 x-1, y-1 ,z-1 ít nhất 1 số bằng 0

Nếu x-1=0  x=1  a^2/c=1 
a^2=c 

Vậy....

 

30 tháng 7 2015

chà chà,khó thế!hihi

 

10 tháng 4 2015

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

nhi tham khảo bài giải này nhé

9 tháng 1 2019

Câu 1 .

\(\left|x^2+|x+1|\right|=x^2+5\)

\(Đkxđ:x^2+5\ge0\)

\(\Leftrightarrow x^2\ge-5,\forall x\) ( với mọi x , vì bất cứ số nào bình phương cũng lớn hơn hoặc bằng - 5 ) 

\(\Leftrightarrow\hept{\begin{cases}x^2+\left|x+1\right|=x^2+5\\x^2+\left|x+1\right|=-x^2-5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=5\\\left|x+1\right|=-2x^2-5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+1=5;x+1=-5\\x+1=-2x^2-5;x+1=2x^2+5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0;-2x^2+x-4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0\left(VN\right);-2x^2+x-4=0\left(VN\right)\end{cases}}\) ( VN là vô nghiệm nha ) 

Vậy : x = 4 hoặc x = -6 

13 tháng 7 2019

\(b+c=a\Rightarrow b+c-a=0\Leftrightarrow2b+2c-2a=0\)

Ta có:

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)^2-\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}}\)

\(=\sqrt{\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)^2+\frac{2c+2b-2a}{abc}}=\sqrt{\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)^2}=\left|\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right|\)là số hữu tỉ (đpcm)

4 tháng 5 2017

Đề bài sai rồi bn. Hình như f(2) đổi thành f(-2) và f(1).f(2) ms đúng

thay 1 vào f(x) sẽ đc: f(1) = a+b+c+d

thay -2 vào f(x) sẽ đc: f(-2) = -8a + 4b -2c + d

thay b= 3a+c vào 2 đa thức trên sẽ đc:

f(1)= 4a+2c+d và f(-2)= 4a+2c+d

=> f(1).f(-2)= ( 4a+2c+d )2

mà a,b,c,c thuộc Z suy ra biểu thức trên cx thuộc Z

  vậy f(1).f(-2) là bình phương của một số nguyên

ko tránh khỏi thiếu sót, nếu làm sai ai đó sửa lại nhé. Thắc mắc gì cứ hỏi

_Hết_

29 tháng 3 2018

Đề sai của bạn sai nhé

Hình như f(2) đổi thành f(-2) và f(1).f(2) mới đúng

Thay 1 vào f(x) sẽ đc: f(1) = a+b+c+d

Thay -2 vào f(x) sẽ đc: f(-2) = -8a + 4b -2c + d thay b= 3a+c

Vào 2 đa thức trên sẽ đc: f(1)= 4a+2c+d và f(-2)= 4a+2c+d => f(1).f(-2)= ( 4a+2c+d )\(^2\)

Mà a,b,c,c thuộc Z suy ra biểu thức trên cx thuộc Z  

Vậy f(1).f(-2) là bình phương của một số nguyên 

8 tháng 9 2016

a . 

\(b^2\)= ac => \(\frac{a}{b}\)=\(\frac{b}{c}\)

c\(^2\)= bd => \(\frac{b}{c}=\frac{c}{d}\)

=>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{a^3}{b^3}=\frac{c^3}{d^3}\)=\(\frac{\left(a^3+b^3+c^3\right)}{\left(b^3+c^3+d^3\right)}\)( theo \(\frac{t}{c}\)của dãy tỉ số = )

Mà \(\frac{a^3}{b^3}\)\(\frac{a}{b}\)x   \(\frac{a}{b}\).x   \(\frac{a}{b}\)  =   \(\frac{a}{b}\)    x\(\frac{b}{c}\)x\(\frac{c}{d}\)\(\frac{a}{d}\)

Nên \(\frac{\left(a^3+b^3+c^3\right)}{\left(b^3+c^3+d^3\right)}\)=\(\frac{a}{d}\)

8 tháng 9 2016

 x-y=2<=>x=y+2 
thay vào Q được: 
Q=(y+2)^2+y^2-(y+2)y 
=y^2+2y+4 
=(y+1)^2+3 
=>A>=3 
dấu bằng xảy ra <=>y= -1 và x=1 
vậy min Q=3