Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ 1/a + 1/b + 1/c = 2 bình phương 2 vế ta có
( 1/a + 1/b + 1/c )^2 = 4
1/a^2 + 1/b^2 + 1/c^2 + 2( 1/ab + 1/bc + 1/ac ) = 4
1/a^2 + 2/b^2 + 1/c^2 + 2(a +b +c)abc = 4 ( quy đồng MTC là abc)
1/a^2 + 1/b^2 + 1/c^ + 2abc. abc = 4( vì a+b+c = abc)
1/a^2 + 1/b^2 + 1/c^2 +2 =4
1/a^2 + 1/b^2 + 1/c^2 = 2 ( đpcm)
Ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2<=>\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(<=>\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
\(<=>\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{abc}\right)=4\) Mà a+b+c=abc nên
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4<=>\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\left(đpcm\right)\)
Lời giải:
Đặt \(P=a(b^2-1)(c^2-1)+b(a^2-1)(c^2-1)+c(a^2-1)(b^2-1)\)
\(P=a(b^2c^2-b^2-c^2+1)+b(a^2c^2-a^2-c^2+1)+c(a^2b^2-a^2-b^2+1)\)
\(P=abc(ab+bc+ac)+a+b+c-[a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2)]\)
\(P=abc(ab+bc+ac)+a+b+c-[ab(a+b)+bc(b+c)+ac(a+c)]\)
\(P=abc(ab+bc+ac)+a+b+c+3abc-[ab(a+b+c)+bc(b+c+a)+ac(a+b+c)]\)
\(P=abc(ab+bc+ac)+a+b+c+3abc-(a+b+c)(ab+bc+ac)\)
Thay \(a+b+c=abc\)
\(\Rightarrow P=abc(ab+bc+ac)+4abc-abc(ab+bc+ac)\)
hay \(P=4abc\) (đpcm)
Ta biểu thị 2 số hạng liên tiếp của dãy có dạng:\(\frac{\left(n-1\right)n}{2};\frac{n\left(n+1\right)}{2}\)
\(\frac{\left(n-1\right)n}{2}+\frac{n\left(n+1\right)}{2}\)
\(=\frac{\left(n-1\right)n+n\left(n+1\right)}{2}\)
\(=\frac{n\left(n-1+n+1\right)}{2}\)
\(=\frac{n\times2n}{2}\)
\(=n^2\)
\(\Rightarrow\)Tổng hai số hạng liên tiếp của dãy bao giờ cũng là số chính phương
Lời giải:
Muốn chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\) ta chỉ cần chỉ ra \(ab+bc+ac=1\)
Thật vậy:
\((a+b+c)^2-(a^2+b^2+c^2)=2^2-2\)
\(\Leftrightarrow a^2+b^2+c^2+2(ab+bc+ac)-(a^2+b^2+c^2)=2\)
\(\Leftrightarrow 2(ab+bc+ac)=2\Rightarrow ab+bc+ac=1\)
Do đó ta có đpcm.
Em tham khảo tại link dưới đây:
Câu hỏi của Hoàng Nguyễn Quỳnh Khanh - Toán lớp 8 - Học toán với OnlineMath