Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Bài 1: CM A = n2 + n + 6 ⋮ 2
+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)
Khi đó: A = (2k)2 + 2k + 6
A = 4k2 + 2k + 6
A = 2.(2k2 + k + 3) ⋮ 2
+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ
Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn
⇒ A = n2 + n + 6 là số chẵn
A = n2 + n + 6 ⋮ 2
+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N
Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:
Bài 2: CM: A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N
Với n = 1 ta có: A = 13 + 1.5
A = 1 + 5 = 6 ⋮ 6
Giả sử A đúng với n = k (k \(\in\) N)
Khi đó ta có: A = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)
Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k + 1
Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6
Thật vậy với n = k + 1 ta có:
A = (k + 1)3 + 5(k + 1)
A = (k +1).(k + 1)(k + 1) + 5.(k +1)
A = (k2 + k + k +1).(k + 1) + 5k +5
A = [k2 + (k + k) + 1].(k + 1) + 5k + 5
A = [k2 + 2k + 1].(k + 1) + 5k + 5
A = k3 + k2 + 2k2 + 2k + k +1 +5k +5
A = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5)
A = (k3 + 5k) + 3k2 + 3k + 6
A = (k3 + 5k) + 3k(k +1) + 6
k.(k +1) là tích của hai số liên tiếp nên luôn chia hết cho 2
⇒ 3.k.(k + 1) ⋮ 6 (2)
6 ⋮ 6 (3)
Kết hợp (1); (2) và (3) ta có:
A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N
Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm)
bai 1 ta co ab-ba=10a+b-10b-b=(10a-a)-(10b-b)=9a-9b=9.(a-b). vi 9.(a-b) chia het cho 9 suy ra (ab-ba) chia het cho 9 voi a>b (dpcm)
A=22014-(22013+22012+...+22+2+1)
Đặt biểu thức trong ngoặc là B
Ta có:
2B=2(22013+22012+....+22+2+1)
2B=22014+22013+...23+22+2
Suy ra:
2B-B=(22014+22013+.....+23+22+...+2)-(22013+22012+.......22+2+1)
B=22014-1
=> A-B=22014-(22014-1)
=1
Vậy A=1
\(A=2^{2011}+2^{2012}+...+2^{2016}\)
\(=>2A=2^{2012}+2^{2013}+2^{2014}+...+2^{2017}\)
\(=>A=2^{2017}-2^{2011}=2^{2011}\left(2^6-1\right)=63\cdot2^{2011}\)
Vì 63 chia hết cho 21 nên A chia hết cho 21. đpcm
Có A=20122013+2/20122013-1
=(20122013-1)+3/20122013-1
=20122013-1/20122013-1 + 3/20122013-1
=1 + 3/20122013-1
Có B=20122013/20122013-3
=(20122013-3)+3/20122013-3
=20122013-3/20122013-3 + 3/20122013-3
=1 + 3/20122013-3
Vì 1 + 3/20122013-1>1+20122013-3
nên A>B
Vậy A>B
S = 72013 - 72012 + 72011 - 72010 + ........ + 73- 72 + 7 - 1
= (72013 - 72012) + (72011 - 72010) + ........ + (73- 72) + (7 - 1)
= 72012(7 - 1) + 72010(7 - 1) + ... + 72(7 - 1) + (7 - 1)
= 72012.6+ 72010.6 + ... + 72.6+ 6
= 6(72012 + 72010 + .... + 72) \(⋮\)6
=> S \(⋮\)6
2009\(^{2013}\)+ 2013\(^{2012}\)
số 2009\(^{2013}\) có chử số tận cùng là 9 mà mủ lẻ nên kết quả sẽ có chử số tận cùng vẫn là 9
số 2013\(^{2012}\)có chử số tận cùng là 3 mà mủ chẳn nên kết quả sẽ có chữ số tận cùng là 1
2009\(^{2013}\)+ 2013\(^{2012}\) = ...9 +....1 = ...0 =>2009\(^{2013}\)+ 2013\(^{2012}\)chia hết cho 10
16\(^{2013}\)- 8\(^{2012}\)= 16.16\(^{2012}\)- 16.8\(^{2010}\)= .....0 => chia hết cho 10