Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)
\(=2^{2011}\cdot\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(=2^{2011}\cdot63⋮21\)(vì \(63⋮21\))
Vậy \(A⋮21\left(đpcm\right)\)
A=22011+22012+22013+22014+22015+22016
A=22011.1+22011.2+22011.22+22011.23+22011.24+22011.25
A=22011.(1+2+22+23+24+25)
A=22011.(1+2+4+8+16+32)
A=22011.63
A=22011.3.21 chia hết cho 21
Mik sắp làm xong thì bấm nhầm làm mất bài, bây h làm lại thì hơi mất thời gian. Mik hướng dẫn bn làm nhé.
Chứng minh nó chia hết cho 3; cho 7 rồi CM đc nó chia hết cho 21.
Đối vs A chia hết cho 3, bn ghép hai số lại vs nhau và Cm đc. Còn đối vs A chia hết cho 7, bn ghép 3 số lại làm 1 nhóm là Cm đc. Nếu ko biết thì cố nghĩ đi nhé. Chúc bạn học tốt.
A=\(2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)
A=\(\left(2^{2011}+2^{2012}\right)+\left(2^{2013}+2^{2014}\right)+\left(2^{2015}+2^{2016}\right)\)
A=\(2^{2011}\left(1+2\right)+2^{2013}\left(1+2\right)+2^{2015}\left(1+2\right)\)
A=\(2^{2011}\cdot3+2^{2013}\cdot3+2^{2015}\cdot3\)
A=\(3\left(2^{2011}+2^{2013}+2^{2015}\right)⋮3\)(1)
A=\(2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)
A=\(\left(2^{2011}+2^{2012}+2^{2013}\right)+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
A=\(2^{2011}\left(1+2+2^2\right)+2^{2014}\left(1+2+2^2\right)\)
A=\(2^{2011}\cdot7+2^{2014}\cdot7\)
A=\(7\cdot\left(2^{2011}+2^{2014}\right)⋮7\)(2)
Từ (1) và (2)\(\Rightarrow A⋮3,7\)
Mà ƯCLN(3,7)=1
\(\Rightarrow A⋮3\cdot7=21\)
2009\(^{2013}\)+ 2013\(^{2012}\)
số 2009\(^{2013}\) có chử số tận cùng là 9 mà mủ lẻ nên kết quả sẽ có chử số tận cùng vẫn là 9
số 2013\(^{2012}\)có chử số tận cùng là 3 mà mủ chẳn nên kết quả sẽ có chữ số tận cùng là 1
2009\(^{2013}\)+ 2013\(^{2012}\) = ...9 +....1 = ...0 =>2009\(^{2013}\)+ 2013\(^{2012}\)chia hết cho 10
Bài 1
a/ \(ab+ba=10a+b+10b+a=11a+11b=11\left(a+b\right)\) chia hết cho 11
b/ \(ab-ba=10a+b-10b-a=9a-9b=9\left(a-b\right)\) chia hết cho 9
Bài 2
a/ \(\overline{abcd}=100.\overline{ab}+\overline{cd}=100.\overline{ab}+100.\overline{cd}-99.\overline{cd}=100\left(\overline{ab}+\overline{cd}\right)-99.\overline{cd}\)
Ta có \(\overline{ab}+\overline{cd}\) chia hết cho 99 \(\Rightarrow100\left(\overline{ab}+\overline{cd}\right)\) chia hết cho 99 và \(99.\overline{cd}\) chia hết cho 99 \(\Rightarrow100\left(\overline{ab}+\overline{cd}\right)-99.\overline{cd}\) chia hết cho 99 nên \(\overline{abcd}\) chia hết cho 99
b/ \(\overline{abcdef}=1000.\overline{abc}+\overline{def}=999.\overline{abc}+\left(\overline{abc}+\overline{def}\right)=27.37.\overline{abc}+\left(\overline{abc}+\overline{def}\right)\)
\(\Rightarrow\overline{abcdef}\) chia heets cho 37
Bài 3
a/ \(A=\left(1+3+3^2\right)+...+3^{1998}\left(1+3+3^2\right)=13.\left(1+...+3^{1998}\right)\) chia hết cho 13
b/ \(B=\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)=21.\left(1+...+4^{2010}\right)\) chia hết cho 21
a) \(2^{2017}+2^{2014}=2^{2014}\left(2^3+1\right)=2^{2014}.9⋮9\)
b) \(4^{2016}+4^{2014}=4^{2014}\left(4^2+1\right)=4^{2014}.17\)
2) \(3.4^{n+2}+4^n=49\\ \Rightarrow4^n\left(3.4^2+1\right)=49\\ \Rightarrow4^n.33=49\\ \Rightarrow4^n=16\\ \Rightarrow n=2\)
3) \(200-180:\left[36.5-7.25\right]\\ =200-180:\left[180-175\right]\\ =200-180:5\\ =200-36\\ =164\)
Ai bít ko giúp mk vs !!!
\(A=2^{2011}+2^{2012}+...+2^{2016}\)
\(=>2A=2^{2012}+2^{2013}+2^{2014}+...+2^{2017}\)\(=>A=2^{2017}-2^{2011}=2^{2011}\left(2^6-1\right)=63\cdot2^{2011}\)
Vì 63 chia hết cho 21 nên A chia hết cho 21. đpcm