Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}=\frac{1}{a+1}+\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a+1}+\frac{1}{a}-\frac{1}{a+1}=\frac{1}{a}\)
Vậy: \(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
\(\frac{1}{5}=\frac{1}{6}+\frac{1}{5.6}=\frac{1}{7}+\frac{1}{7.6}+\frac{1}{5.6}=\frac{1}{7}+\frac{1}{42}+\frac{1}{30}\)
2) \(A=\frac{n+3}{n-2}=1+\frac{5}{n-2}\)
A nhận giá trị nguyên <=> \(\frac{5}{n-2}\) nhận giá trị nguyên
<=> \(n-2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
<=> \(n=\left\{-3;1;3;7\right\}\)
Mình học dốt nên chỉ làm được bài 2 thôi :)
\(A=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)
Để A nhận giá trị nguyên => \(\frac{5}{n-2}\)nhận giá trị nguyên
=> \(5⋮n-2\)
=> \(n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n-2 | 1 | -1 | 5 | -5 |
n | 3 | 1 | 7 | -3 |
Bài 4
Để phân số A có giá trị trong tập hợp số nguyên thì tử phải chia hết cho mẫu.
-> n+3 chia hết cho n-2
->n-2+5 chia hết cho n-2
mà n-2 chia hết cho n-2
-> 5 chia hết cho n-2
->n-2 thuộc Ư(5)={-1,1,-5,5}
=>n thuộc {-3,3,1,7}
Vậy các số nguyên n thỏa mãn là -3,1,3,7
để ps A nguyên thì n+3 chia hết cho n-2
suy ra (n-2)+5 chia hết cho n-2
suy ra 5 chia hết cho n-2
suy ra n-2 thuộc {1;-1;5;-5}
n thuộc {3;1;7;-3}
2)có 1/(a+1)+1/a.(a+1)=a.(a+1)/[(a+1).a.(a+1)]+(a+1)/[(a+1).a.(a+1)](nhân chéo)=a.(a+1)+(a+1)/a.(a+1).(a+1)=(a+1)(a+1)/a.(a+1).(a+1)=1/a
áp dụng :1/5=1/(5+1)+1/5.(5+1)=1/6+1/30
1.
A=\(\frac{n-2+5}{n+2}\)có công thức \(\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}\)
A=\(1+\frac{5}{n-2}\)
Ư(5)={-5;-1;1;5}
thay giô các kết quả
n-2=-5
n=-2 ( chọn)
n-2=-1
n= 1 (chọn)
n-2=1
n=3 (chọn)
n-2=5
n=7 (chọn)
vậy n= -2;1;3;7
2.
\(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
ta biến đổi \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)thành \(\frac{1}{a}\)
ta thấy trong \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)có về 2 gấp vế trước a lần
ta quy đồng \(\frac{a}{a.\left(a+1\right)}+\frac{1}{a\left(a+1\right)}=\frac{a+1}{a.\left(a+1\right)}\)cùng có a+1 ở tử và mẫu ta cùng gạch thì nó thành
\(\frac{1}{a}\)
vậy :\(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
a)\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)
suy ra (đề bài)
b)\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}=1-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)
1/ b/ \(\frac{-a}{-b}=\frac{a}{b}=>\frac{-a}{-b}=\frac{a}{b}\)
2/ \(\frac{3}{-4}=\frac{-3}{4};\frac{-5}{-7}=\frac{5}{7};\frac{2}{-9}=\frac{-2}{9};\frac{-11}{-10}=\frac{11}{10}\)
tik nha chúc m.n zui zẻ trong năm ms!!! HAPPY NEW YEAR 2016!!!!!!!!!!!!
1/ a/ \(\frac{a}{-b}=-\left(\frac{a}{b}\right);\frac{-a}{b}=-\left(\frac{a}{b}\right)=>\frac{a}{-b}=\frac{-a}{b}\)