Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a-b=3\Rightarrow a=3+b\) Thay vào B ta được :\(B=\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{\left(3-8\right)+b}{b-5}-\frac{12+3b}{9+b+3}=\frac{b-5}{b-5}-\frac{12+3b}{12+3b}=1-1=0\)
Vậy B = 0
Ta có:
\(A+B=11\left(A-B\right)\)
\(\Rightarrow A+B=11A-11B\)
\(\Rightarrow\) B+11B=11A-A
Suy ra : 12B=10A
\(\Rightarrow\frac{A}{B}=\frac{10}{12}=\frac{6}{5}\)
Vì A là giao điểm của hai tọa độ nên:
-3.x+1=-4.x
-3x+1=-4x
1=-4x-(-3x)
1=-4x+3x
1=-x
x=-1
Khi x=-1=>y=4
Vậy A có tọa độ là (-1;4)
Với f(1) = 1, ta có:
a.1 + b = 1
hay: a + b = 1
~> b = 1 - a (1)
Với f(2) = 4, ta có:
a.2 +b =4
hay: a + b = 4 (2)
Thay (1) vào (2), ta có:
2a + b = 4
hay: 2a + 1 - a = 4
1a + 1 = 4
a = 4 - 1
a = 3
Lại có:
a + b = 1
hay: 3 + b = 1
b = 1 - 3
b = -2
Vậy, a = 3; b = -2
---
Bận ăn cơm nên giờ mới trả lời được :3
a, Ta có: \(A=\left|x-1\right|+\left|x-2017\right|=\left|x-1\right|+\left|2017-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A\ge\left|x-1+2017-x\right|=\left|-2016\right|=2016\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-1\ge0\\2017-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\le2017\end{matrix}\right.\Rightarrow1\le x\le2017\)
Vậy \(MIN_A=2016\) khi \(1\le x\le2017\)
b, Ta có: \(\left\{{}\begin{matrix}\left(x-5\right)^2\ge0\\\left|x-5\right|\ge0\end{matrix}\right.\Rightarrow\left(x-5\right)^2+\left|x-5\right|\ge0\)
\(\Rightarrow B=\left(x-5\right)^2+\left|x-5\right|+2014\ge2014\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-5\right)^2=0\\\left|x-5\right|=0\end{matrix}\right.\Rightarrow x=5\)
Vậy \(MIN_B=2014\) khi x = 5
b may cho chú là chung nghiệm là x=5 nếu (x-6)^2+|x-5| thì sao? cần phải nhớ (x-6)^2=|x-6|^2 sau đó áp dụng |a|+|b|>=|a+b|
\(A=\frac{-x^2-2x-5}{x^2+2x+2}=\frac{-\left(x^2+2x+1\right)-4}{\left(x^2+2x+1\right)+1}=\frac{-\left(x+1\right)^2-4}{\left(x+1\right)^2+1}=\frac{-\left(x+1\right)^2-1-3}{\left(x+1\right)^2+1}=\frac{-\left[\left(x+1\right)^2+1\right]-3}{\left(x+1\right)^2+1}=-1-\frac{3}{\left(x+1\right)^2+1}\)Để \(-1-\frac{3}{\left(x+1\right)^2+1}\) đạt GTLN <=> \(-\frac{3}{\left(x+1\right)^2+1}\) đạt GTLN
=> (x + 1)2 + 1 đạt GTNN
Vì \(\left(x+1\right)^2\ge0\) với mọi x \(\in R\)
=> \(\left(x+1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> x = - 1
Vậy GTNN của A = - 1 - 3 = - 4 tại x = - 1
Với mọi x thuộc R Có (x^2-9)^2 \(\ge\) 0
[y-4] \(\ge\) 0
Suy ra (x^2-9)^2+[y-4] - 1 \(\ge\) -1
Xét A=-1 khi và chỉ khi (x^2-9)^2 và [y-4] đều bằng 0
Tự tính ra
Xin lỗi nhưng vì không biết nên mình phải dùng [ ] thay cho GTTĐ nhé
Xin lỗi nhiều tại mình o tìm được kí hiệu đó
Đặt \(\frac{x}{18}=\frac{y}{9}=k\)
\(\Rightarrow x=18k;y=9k\)
Thay vào P ta được:
\(P=\frac{2.18k-3.9k}{2.18k+3.9k}\)
\(\Rightarrow P=\frac{36k-27k}{36k+27k}\)
\(\Rightarrow P=\frac{k\left(36-27\right)}{k\left(36+27\right)}\)
\(\Rightarrow P=\frac{9k}{63k}\)
\(\Rightarrow P=\frac{1}{7}\)
Vậy \(P=\frac{1}{7}.\)
a) Thiếu ĐK: \(a+b+c=0\)
Giải:
Ta có:
\(a^3+a^2c-abc+b^2c+b^3\)
\(=a^3+a^2c+a^2b-a^2b-abc+b^2c+b^3+b^2a-b^2a\)
\(=a^2\left(a+b+c\right)-a^2b-abc+b^2\left(a+b+c\right)-b^2a\)
\(=-a^2b-abc-b^2a\)
\(=-ab\left(a+b+c\right)\)
Mà \(a+b+c=0\) nên:
\(=-ab.0\)
\(=0\)
Vậy \(a^3+a^2c-abc+b^2c+b^3=0\) (Đpcm)