K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Vì A là giao điểm của hai tọa độ nên:

-3.x+1=-4.x

-3x+1=-4x

1=-4x-(-3x)

1=-4x+3x

1=-x

x=-1

Khi x=-1=>y=4

Vậy A có tọa độ là (-1;4)

11 tháng 3 2017

Cảm ơn nha!haha

17 tháng 2 2017

Ta có : \(\left\{\begin{matrix}Q=-\left(x-7\right)^2-6\\-\left(x-7\right)^2\le0\\-6=-6\end{matrix}\right.\)

\(\Rightarrow Q=-\left(x-7\right)^2-6\le0-6=-6\)

Vậy GTLN của \(Q=-\left(x-7\right)^2-6\)\(-6\)

15 tháng 2 2017

\(A=\frac{-x^2-2x-5}{x^2+2x+2}=\frac{-\left(x^2+2x+1\right)-4}{\left(x^2+2x+1\right)+1}=\frac{-\left(x+1\right)^2-4}{\left(x+1\right)^2+1}=\frac{-\left(x+1\right)^2-1-3}{\left(x+1\right)^2+1}=\frac{-\left[\left(x+1\right)^2+1\right]-3}{\left(x+1\right)^2+1}=-1-\frac{3}{\left(x+1\right)^2+1}\)Để \(-1-\frac{3}{\left(x+1\right)^2+1}\) đạt GTLN <=> \(-\frac{3}{\left(x+1\right)^2+1}\) đạt GTLN

=> (x + 1)2 + 1 đạt GTNN

\(\left(x+1\right)^2\ge0\) với mọi x \(\in R\)

=> \(\left(x+1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> x = - 1

Vậy GTNN của A = - 1 - 3 = - 4 tại x = - 1

17 tháng 2 2017

Cảm ơn bạn nhiều!haha

21 tháng 2 2017

Ta có :

\(S=1.2+2.3+...+49.50\)

\(\Leftrightarrow3S=1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+49.50.\left(51-48\right)\)

\(\Leftrightarrow3S=1.2.3-0.1.2+2.3.4-1.2.3+...+49.50.51-48.49.50\)

\(\Leftrightarrow3S=49.50.51\)

\(\Leftrightarrow S=\frac{49.50.51}{3}=41650\)

21 tháng 2 2017

S=1 . 2 + 2.3+3.4+.....+49.100

3S=1.2.3+2.3.3+3.4.3+....+49.50.3

3S=1.2.3+2.3.(4-1)+3.4(5-2)+....+49.50(51-48)

3S=1.2.3-2.3.4+2.3.4-2.3.1+......+48.49.50+49.50.51

3S=49.50.51

S=49.50.51 / 3

S=41650

11 tháng 5 2017

ta sẽ làm gì với cái này :D

11 tháng 5 2017

bạn làm hôj mjk

17 tháng 2 2017

Ta có : \(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)

Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow\left\{\begin{matrix}a=10k\\b=3k\end{matrix}\right.\)

Thay \(a=10k\)\(b=3k\) vào biểu thức \(A=\frac{3\cdot a-2\cdot b}{a-3\cdot b}\), ta được :

\(A=\frac{3\cdot10k-2\cdot3k}{10k-3\cdot3k}=\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)

Vậy \(A=24\)

17 tháng 2 2017

Cảm ơn bạn nha!

21 tháng 9 2017

Cho mk xin cái đề bài

21 tháng 9 2017

undefined

21 tháng 2 2017

\(\frac{x+1}{203}+\frac{x+2}{202}+\frac{x+3}{201}+\frac{x+4}{200}+\frac{x+5}{199}+5=0\)

\(\Leftrightarrow\frac{x+1}{203}+1+\frac{x+2}{202}+1+\frac{x+3}{201}+1+\frac{x+4}{200}+1+\frac{x+5}{199}+1=0\)

\(\Leftrightarrow\frac{x+204}{203}+\frac{x+204}{202}+\frac{x+204}{201}+\frac{x+204}{200}+\frac{x+204}{199}=0\)

\(\Leftrightarrow\left(x+204\right)\left(\frac{1}{203}+\frac{1}{203}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\right)=0\)

\(\Leftrightarrow x+204=0\).Do \(\frac{1}{203}+\frac{1}{203}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\ne0\)

\(\Leftrightarrow x=-204\)

21 tháng 2 2017

Ta có :

\(\frac{x+1}{203}+\frac{x+2}{202}+\frac{x+3}{201}+\frac{x+4}{200}+\frac{x+5}{199}+5=0\)

\(\Leftrightarrow\left(\frac{x+1}{203}+1\right)+\left(\frac{x+2}{202}+1\right)+\left(\frac{x+3}{201}+1\right)+\left(\frac{x+4}{200}+1\right)+\left(\frac{x+5}{199}+1\right)=0\)

\(\Leftrightarrow\left(\frac{x+204}{203}\right)+\left(\frac{x+4}{202}\right)+\left(\frac{x+4}{201}\right)+\left(\frac{x+204}{200}\right)+\left(\frac{x+204}{199}\right)=0\)

\(\Leftrightarrow\left(x+204\right)\left(\frac{1}{203}+\frac{1}{202}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\right)=0\)

Dễ thấy \(\left(\frac{1}{203}+\frac{1}{202}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\right)\ne0\)

=> x + 204 = 0

<=> x = - 204

Vậy pt có nghiệm x = - 204

21 tháng 2 2017

Ta có :

\(2015^{2014}=\left(\overline{......5}\right)\)

\(2014^{2015}=\left(2014^4\right)^{503}.\left(2014^3\right)=\left(\overline{.....6}\right).\left(\overline{.....4}\right)=\left(\overline{.....4}\right)\)

\(2015^{2014}-2014^{2015}=\left(\overline{......5}\right)-\left(\overline{......4}\right)=\left(\overline{......1}\right)\)

Vậy biểu thức có chữ số tận cùng là 1

21 tháng 2 2017

Ta có:

- \(2015^{2014}\) có chữ số tận cùng là 5 (Các số có tận cùng là 5 khi nâng lên lũy thừa bậc mấy chữ số tận cùng cũng không thay đổi)

- \(2014^{2015}\) có chữ số tận cùng là 4 (Các số có tận cùng là 4 khi nâng lên lũy thừa bậc lẻ thì chữ số tận cùng không thay đổi)

~> \(2015^{2014}-2014^{2015}=5-4=1\)

Vậy, chữ số tận cùng của \(2015^{2014}-2014^{2015}\) là 1

---

Chọn đáp án này đi :)