Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì A là giao điểm của hai tọa độ nên:
-3.x+1=-4.x
-3x+1=-4x
1=-4x-(-3x)
1=-4x+3x
1=-x
x=-1
Khi x=-1=>y=4
Vậy A có tọa độ là (-1;4)
\(A=\frac{-x^2-2x-5}{x^2+2x+2}=\frac{-\left(x^2+2x+1\right)-4}{\left(x^2+2x+1\right)+1}=\frac{-\left(x+1\right)^2-4}{\left(x+1\right)^2+1}=\frac{-\left(x+1\right)^2-1-3}{\left(x+1\right)^2+1}=\frac{-\left[\left(x+1\right)^2+1\right]-3}{\left(x+1\right)^2+1}=-1-\frac{3}{\left(x+1\right)^2+1}\)Để \(-1-\frac{3}{\left(x+1\right)^2+1}\) đạt GTLN <=> \(-\frac{3}{\left(x+1\right)^2+1}\) đạt GTLN
=> (x + 1)2 + 1 đạt GTNN
Vì \(\left(x+1\right)^2\ge0\) với mọi x \(\in R\)
=> \(\left(x+1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> x = - 1
Vậy GTNN của A = - 1 - 3 = - 4 tại x = - 1
Áp dụng tc dãy tỉ số bằng nhau ta có
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)
\(\Rightarrow a+b+c=a+b-c\)
\(\Rightarrow a+b+c-a-b+c=0\)
\(\Rightarrow2c=0\)
\(\Rightarrow c=0\)
\(\frac{x+1}{203}+\frac{x+2}{202}+\frac{x+3}{201}+\frac{x+4}{200}+\frac{x+5}{199}+5=0\)
\(\Leftrightarrow\frac{x+1}{203}+1+\frac{x+2}{202}+1+\frac{x+3}{201}+1+\frac{x+4}{200}+1+\frac{x+5}{199}+1=0\)
\(\Leftrightarrow\frac{x+204}{203}+\frac{x+204}{202}+\frac{x+204}{201}+\frac{x+204}{200}+\frac{x+204}{199}=0\)
\(\Leftrightarrow\left(x+204\right)\left(\frac{1}{203}+\frac{1}{203}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\right)=0\)
\(\Leftrightarrow x+204=0\).Do \(\frac{1}{203}+\frac{1}{203}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\ne0\)
\(\Leftrightarrow x=-204\)
Ta có :
\(\frac{x+1}{203}+\frac{x+2}{202}+\frac{x+3}{201}+\frac{x+4}{200}+\frac{x+5}{199}+5=0\)
\(\Leftrightarrow\left(\frac{x+1}{203}+1\right)+\left(\frac{x+2}{202}+1\right)+\left(\frac{x+3}{201}+1\right)+\left(\frac{x+4}{200}+1\right)+\left(\frac{x+5}{199}+1\right)=0\)
\(\Leftrightarrow\left(\frac{x+204}{203}\right)+\left(\frac{x+4}{202}\right)+\left(\frac{x+4}{201}\right)+\left(\frac{x+204}{200}\right)+\left(\frac{x+204}{199}\right)=0\)
\(\Leftrightarrow\left(x+204\right)\left(\frac{1}{203}+\frac{1}{202}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\right)=0\)
Dễ thấy \(\left(\frac{1}{203}+\frac{1}{202}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\right)\ne0\)
=> x + 204 = 0
<=> x = - 204
Vậy pt có nghiệm x = - 204
Ta có :
\(S=1.2+2.3+...+49.50\)
\(\Leftrightarrow3S=1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+49.50.\left(51-48\right)\)
\(\Leftrightarrow3S=1.2.3-0.1.2+2.3.4-1.2.3+...+49.50.51-48.49.50\)
\(\Leftrightarrow3S=49.50.51\)
\(\Leftrightarrow S=\frac{49.50.51}{3}=41650\)
S=1 . 2 + 2.3+3.4+.....+49.100
3S=1.2.3+2.3.3+3.4.3+....+49.50.3
3S=1.2.3+2.3.(4-1)+3.4(5-2)+....+49.50(51-48)
3S=1.2.3-2.3.4+2.3.4-2.3.1+......+48.49.50+49.50.51
3S=49.50.51
S=49.50.51 / 3
S=41650
\(a-b=3\Rightarrow a=3+b\) Thay vào B ta được :\(B=\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{\left(3-8\right)+b}{b-5}-\frac{12+3b}{9+b+3}=\frac{b-5}{b-5}-\frac{12+3b}{12+3b}=1-1=0\)
Vậy B = 0
Ta có : \(\left\{\begin{matrix}Q=-\left(x-7\right)^2-6\\-\left(x-7\right)^2\le0\\-6=-6\end{matrix}\right.\)
\(\Rightarrow Q=-\left(x-7\right)^2-6\le0-6=-6\)
Vậy GTLN của \(Q=-\left(x-7\right)^2-6\) là \(-6\)
2.Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)
\(\Rightarrow a+b+c=a+b-c\)
\(\Rightarrow a+b+c-a-b+c=0\)
\(\Rightarrow2c=0\)
\(\Rightarrow c=0\)
Vậy c=0
BT5: Ta có: f(1)=1.a+b=1 =>a+b=1 (1)
f(2)=2a+b=4 (2)
Trừ (1) cho (2) ta có: 2a+b-a-b=4-1 => a=3
Với a=3 thay vào (1) ta có: 3+b=1 => b=-2
Vậy a=3, b=-2
Ta có : \(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)
Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow\left\{\begin{matrix}a=10k\\b=3k\end{matrix}\right.\)
Thay \(a=10k\) và \(b=3k\) vào biểu thức \(A=\frac{3\cdot a-2\cdot b}{a-3\cdot b}\), ta được :
\(A=\frac{3\cdot10k-2\cdot3k}{10k-3\cdot3k}=\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)
Vậy \(A=24\)
Cảm ơn bạn nha!