Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2+22+23+...+290
= ( 2+22+23) +( 24+25+26) +...+(288+289+290)
= 2.(1+2+4) +24.( 1+2+4 ) +...+288.(1+2+4)
=2.7+24.7+...+288.7
Vì mỗi tích đều có 1 số hạng chia hết cho 7
=> 2+22+23+...+299 chia hết cho 7
\(A=2^1+2^2+2^3+...+2^{90}\)
\(=\left(2^1+2^2+2^3\right)+...+\left(2^{88}+2^{89}+2^{90}\right)\)
\(=2^1\left(1+2+2^2\right)+...+2^{88}\left(1+2+2^2\right)\)
\(=2^1\cdot7+...+2^{88}\cdot7\)
\(=7\left(2^1+...+2^{88}\right)⋮7\)
Nguyễn Huy Thắng cau dung goi to bang may va tao duoc ko dattebayo?
A = 2 + 22 +23 +.........+ 290
A = ( 2 + 22 + 23) +.........+ ( 288 + 289 + 290)
A = 2(1+2+4) + .......... 288(1+2+4)
A = 2 . 7 + .......... + 288 . 7
A = 7 . ( 2+..........+288)
Vì 7 chia hết cho 7 => tích 7 . ( 2+........+288) chia hết cho 7.
Hay A chia hết cho 7.
\(A=2+2^2+2^3+............+2^{90}\)
\(A=\left(2+2^2+2^3+2^4+2^5+2^6\right)+.............+\left(2^{85}+2^{86}+2^{87}+2^{88}+2^{89}+2^{90}\right)\)
\(A=2.3.21+2^7.3.21+...........+2^{85}.3.21\)
\(A=21.3.\left(2+2^7+.......+2^{85}\right)\)
=> A chia hết cho 21
Bài 2.để 2 số hạn đầu tiên lại,còn lại 99 số ta chia làm 33 nhóm mỗi nhóm có 3 số liên tiếp nhau.
Ta có \(=2+2^2+2^3+2^4+.....2^{100}\)
\(=2+2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+....+2^{98}\left(1+2+2^2\right)\)
\(=2+2.7+2^5.7+.....+2^{98}.7\)
\(\Rightarrow\)Tổng này chia 7 dư 2
bài 1
abcabc=abc.1001
có 1001chia hết cho 7
=>abc.1001 chia hết cho 7
còn chia hết cho 11 và 13 thì tương tự
bài 2
A=(2100+299+298)+...+(24+23+22)+21
A=(298.22+298.21+298.1)+....+(22.22+22.21+22.1)+21
A=298.(22+21+1)+...+22.(22+21+1)+21
A=298.7+...+22.7+21
A=(298+22).7 +21
có 7 chia hết co 7
=>(298+22).7 chia hết cho 7
=>Achia 7 dư 21
Đặt A là tổng của 2^1 + 2^2 + 2^3 +.....+ 2^88 +2^89 + 2^90
= (2^1 + 2^2 + 2^3) + ....+ (2^88 + 2^89 +2^90)
= (2^1.1+2^1.2+2^1.2^2) +....+(2^88.1+2^88.2+2^88.2^2)
= 2^1.(1+2+2^2) +.....+2^88.(1+2+2^2)
= 2^1.7 +....+2^88.7
= 7.(2^1+....+2^88)
=> A chia hết cho 7