Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2 + 22 + 23 + 24 + ........... + 290
A = ( 2 + 22 + 23 + 24 + 25 + 26 ) + .................... + ( 285 + 286 + 287 + 288 + 289 + 290 )
A = 126 + .......................... + 284 . ( 2 + 22 + 23 + 24 + 25 + 26 )
A = 126 + ...................... + 284 . 126
A = 126 . ( 1 + ................. + 284 )
Mà 126 \(⋮\)21 \(\Rightarrow A⋮21\left(đpcm\right)\)
Ta có : A= 2+2^2+2^3+2^4+...+2^90
= (2+2^2+2^3+...+2^6)+(2^7+2^8+...+2^12)+...+(2^85+2^86+...+2^90)
Mà các nhóm trên chia hết cho 21 nên A chia hết cho 21
Từ 1 \(\rightarrow\) 90 có 90 số.
Nhóm thành: 90 : 6 = 15 (nhóm) . Mỗi nhóm có 6 số hạng.
A = (2 + 22 + 23 + 24 + 25 + 26) + ... + (285 + 286 + 287 + 288 + 289 + 290)
A = 126 + ... + 284. (2 + 22 + 23 + 24 + 25 + 26)
A = 126 + ... + 284. 126
A = 126 . (1 + ... + 284)
Do 126 \(⋮\) 21 \(\Rightarrow\) A \(⋮\) 21.
ta có:
22+23+24+...+290=2.(1+2+22)+24.(1+2+22)+...+288.(1+2+22)
=2.7+24.7+...+288.7=7.(2+24+...+288) chia hết cho 7 (1)
ta lại có:
2+2+...+290=2.(1+2)+23.(1+2)+...+289.(1+2)=2.3+23.3+...+289.3=3.(2+23+...+289) chia hết cho 3 (2)
Từ (1) và (2) suy ra
2+22+23+...+290 chia hết cho 3 và 7 hay chia hết cho 21
A = 2 + 22 + 23 + 24 + ... + 290
= ( 2 + 22 + 23 + 24 + 25 + 26 ) + ... + ( 285 + 286 + 287 + 288 + 289 + 290 ) < 15 cặp số >
= 2( 1 + 2 + 22 + 23 + 24 + 25 ) + ... + 285( 1 + 2 + 22 + 23 + 24 + 25 )
= 2.63 + ... + 285.63
= 63( 2 + ... + 285 )
Vì 63 chia hết cho 21 => 63( 2 + ... + 285 ) chia hết cho 21
hay A chia hết cho 21 ( đpcm )
a) \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+1-\frac{1}{50}\)
\(=2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2\)
b) Ta thấy : 21 = 3 .7 ( 3 ; 7 ) = 1
để chứng minh B \(⋮\)21 , ta cần chứng minh B \(⋮\)3 và 7
Ta có :
B = 21 + 22 + 23 + 24 + ... + 230
B = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 229 + 230 )
B = 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 229 . ( 1 + 2 )
B = 2 . 3 + 23 . 3 + ... + 229 . 3
B = ( 2 + 23 + ... + 229 ) . 3 \(⋮\)3 ( 1 )
Lại có : B = 21 + 22 + 23 + 24 + ... + 230
B = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 228 + 229 + 230 )
B = 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 228 . ( 1 + 2 + 22 )
B = 2 . 7 + 24 . 7 + ... + 228 . 7
B = ( 2 + 24 + ... + 228 ) . 7 \(⋮\)7 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)B \(⋮\)21
a = 2+22+23+24+...+210
a = (2+22) + (23+24)+....+(29+210)
a = 2(1+2)+23(1+2)+....+29(1+2
a = 3(2+23+...+29) chia hết cho 3
a = 2+22+23+...+210
a = (2+22+23+24+25)+(26+27+28+29+210)
a = 2(1+2+22+23+24)+26(1+2+2+23+24)
a = 31(2+26) chia hết cho 31
=> a chia hết cho 3 và chia hết cho 31
Ta có: A= 2( 1+2) + 23( 1+2)+....+29(1+2) = 3(2+23+25+27+29) chia hết cho 3
Tương tự nhưng theo mình đề bài này sai không thể chứng minh được chia hết cho 7 nên không thể chia hết cho 21( thiếu 1 số hạng)
\(A=2+2^2+2^3+............+2^{90}\)
\(A=\left(2+2^2+2^3+2^4+2^5+2^6\right)+.............+\left(2^{85}+2^{86}+2^{87}+2^{88}+2^{89}+2^{90}\right)\)
\(A=2.3.21+2^7.3.21+...........+2^{85}.3.21\)
\(A=21.3.\left(2+2^7+.......+2^{85}\right)\)
=> A chia hết cho 21