Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1044 + 5 = 100...0 ( 44 cs 0 ) + 5 = 100...5 có tận cùng là 5 => chia hết cho 5 (1)
có tổng các chữ số = 6 chia hết cho 3 => chia hết cho 3 (2)
Từ (1) và (2) => đpcm
b) 1018 + 53 = 100...0 ( 18 cs 0 ) + 53 = 100..53 có tổng các chữ số = 9 chia hết cho 9 => chia hết cho 9 (1)
có tận cùng là 3 không chia hết cho 2 => không chia hết cho 2 (2)
Từ (1) và (2) => đpcm
a)Ta có:
10100+5 =1000...000 +5=1000..0005
100 số 0 99 số 0
—Vì số 1000...0005 có chữ số tận cùng là 5
99 số 0
==> 1000...0005 chia hết cho 5
99 số 0
— Vì số 1000...0005 có tổng các chữ số là 6
99 số 0
Mà 6 chia hết cho 3
Nên 1000...0005 chia hết cho 3
99 số 0
Vậy sô 1000...0005 chia hết cho cả 3 và 5
99 số 0
b)Ta có
1050+44=1000...000 +44=1000..00044
50 số 0. 48 số 0
—Vì 1000...00044 là số chẵn
48 số 0
Nên 1000...00044 chia hết cho 2
48 số 0
—Vì 1000...00044 có tổng các chữ số bằng 9
48 số 0
Mà 9 chia hết cho 9
Nên 1000...00044 chia hết cho 9
48 số 0
Vậy 1000...00044 chia hết cho cả 2 và 9
a) \(10^5+35=100000+35=100035\)
Vì 100035 có chữ số tận cùng là 5 nên nó chia hết cho 5
Vì 100035 có tổng tất cả các chữ số bằng 9 nên nó chia hết cho 9
b) \(10^5+98=100000+98=100098\)
Để 100098 chia hết cho 18 thì 100098 phải chia hết cho 2 và 9 mà 100098 có chữ số tận cùng là số chẵn (8) và tổng của tất cả các chữ số bằng 18 nên 100098 chia hết cho 2 và 9. Vậy 100098 chia hết cho 18.
a) Ta có : \(10^5+35=100000+35=100035\)
+) Vì 100035 tận cùng là 5 => 100035 chia hết cho 5
=> \(10^5+35\) chia hết cho 5
+) Ta có : \(100035=1+0+0+0+3+5=9\)
Để \(10^5+35\) chia hết cho 9 <=> \(10^{35}+35\) có tổng các chữ số của nó chia hết cho 9
Mà 9 chia hết cho 9 => 100035 chia hết cho 9
=> \(10^5+35\) chia hết cho 9
Vậy \(10^5+35\) vừ chia hết cho 5 vừa chia hết cho 9 ( đpcm )
b) Ta có : \(10^5+98=100000+98=100098\)
Vì \(18=2.9\) => Để \(10^5+98\) chia hết cho 18 <=> \(10^5+98\) chia hết cho cả 2 và 9
+) Vì 100098 tận cùng là số chẵn ( 8 )
=> 100098 chia hết cho 2 => \(10^5+98\) chia hết cho 2
+) Ta có : \(100098=1+0+0+0+9+8=18\)
Mà 18 chia hết cho 9
=> 100098 chia hết cho 9
=> \(10^5+98\) chia hết cho 9
Vì \(10^5+98\) vừa chia hết cho 9 vừa chia hết cho 2
=> \(10^5+98\) chia hết cho 18 ( đpcm )
A=(1+3^2)+(3^4+3^6)+...+(3^48+3^50)
A=1(1+3^2)+3^4(1+3^2)+...+3^48(1+3^2)
A=1.10+3^4.10+...+3^48.10
A=10(1+3^4+...+3^48)
A=2.5(1+3^4+...+3^48)
=>A chia hết cho 2 và 5 nên 8.A cũng chia hết cho 2 và 5
a) \(A=10^{100}+5\)
- Tận cùng A là số 5 \(\Rightarrow A⋮5\)
- Tổng các chữ số của A là \(1+5=6⋮3\Rightarrow A⋮3\) \(\)
\(\Rightarrow dpcm\)
b) \(B=10^{50}+44\)
- Tận cùng B là số 4 là số chẵn \(\Rightarrow B⋮2\)
- Tổng các chữ số của B là \(1+4+4=9⋮9\Rightarrow B⋮9\)
\(\Rightarrow dpcm\)
a;
A = 109 + 108 + 107
A = 107.(102 + 10 + 1)
A = 106.2.5.(100 + 10 + 1)
A = 106.2.5.111
A = 106.2.555 ⋮ 555 (đpcm)
b;
B = 817 - 279 - 919
B = 914 - 39.99 - 919
B = 914 - 3.38.99 - 919
B = 914 - 3.94.99 - 919
B = 914 - 3.913 - 919
B = 913.(9 - 3 - 96)
B = 913.(9 - 3 - \(\overline{..1}\))
B = 913.(6 - \(\overline{..1}\))
B = 913.\(\overline{..5}\)
B ⋮ 9; B ⋮ 5
B \(\in\) BC(9; 5) = 9.5 = 45
B ⋮ 45 (đpcm)
Mình Cần gấp quá ! ai trả lời mình tâu người đó làm sư tổ
tận cùng là 6 thì mũ mấy cũng là sáu nên trừ 1 tận cùng là 5 nên cia hết cho 5
a) Ta có: 6x6=36=>hai số có tận cùng là 6 nhân với nhau được tích tận cùng là 6
Mà 6 mũ 100=36 mũ 50=..........
=> 6 mũ 100 có tận cùng =6
=> 6 mũ 100-1 có tận cùng =5=>chia hết cho 5
vì chữ số tận cùng của \(10^{50}+5\)là số 5
\(\Rightarrow10^{50}+5⋮5\)
vì tổng các chữ số của \(10^{50}+5\) là 6 nên
\(\Rightarrow10^{50}+5⋮3\)
Ta có : 1050 + 5 = 1000...0 + 5 (50 chữ số 0)
= 1000....005 (49 chữ số 0) (1)
Vì 1050 + 5 tận cùng là chữ số 5
=> 1050 + 5 \(⋮\)5 (2)
Từ (1) ta có :
Tổng của các chữ số của 1050 + 5 là
1 + 0 + 0 + 0 + ... + 0 + 0 + 0 (49 số hạng 0) = 1 + 5 = 6 \(⋮\)3
=> 1050 + 5 \(⋮\)3 (3)
Từ (2) và (3)
=> 1050 + 5 \(⋮\)5 và 3 (đpcm)