Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
a, \(A\left(x\right)=\left(2x+3\right)^2+\left|x-7\right|\)
Vì \(\hept{\begin{cases}\left(2x+3\right)\ge0\\\left|x-7\right|\ge0\end{cases}}\) => A(x)=0 <=> \(\hept{\begin{cases}2x+3=0\\x-7=7\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{3}{2}\\x=7\end{cases}}\) ( Không xảy ra )
=> A(x) vô nghiệm.
b, \(B\left(x\right)=x^2-2x.5+25+1993=\left(x-5\right)^2+1993\ge1993>0\)
Nên B(x) vô nghiệm
c, \(C\left(x\right)=x^2+2x\cdot\frac{3}{2}+\frac{9}{4}+\frac{11}{4}=\left(x+\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\)
Nên C(x) vô nghiệm
a/ \(A\left(x\right)=\left(2x+3\right)^2+\left|x-7\right|\)
Ta có \(\left(2x+3\right)^2\ge0\)với mọi giá trị của x
\(\left|x-7\right|\ge0\)với mọi giá trị của x
=> \(\left(2x+3\right)^2+\left|x-7\right|\ge0\)với mọi giá trị của x
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}2x+3=0\\x-7=0\end{cases}}\)=> \(\hept{\begin{cases}2x=3\\x=7\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{3}{2}\\x=7\end{cases}}\)(loại)
Vậy A (x) vô nghiệm
a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)
=6x3+3x2-4x+14
b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x
=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x
c/ P(x)=-6x=0
=> x=0 là nghiệm đa thức P(x)
d/ Ta có: x2+4x+5
=x.x+2x+2x+2.2+1
=x(x+2)+2(x+2)+1
=(x+2)(x+2)+1
=(x+2)2+1
Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)
=> Đa thức trên vô nghiệm.
a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến
M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1
=x4+2x2+1
b) M(1)=14+2.12+1=4
M(−1)=(−1)4+2.(−1)2+1=4
c) Ta có: M(x)=x4+2x2+1
Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.
Câu 1 : M(x) = 6x3 + 2x4 - x2 + 3x2 - 2x3 - x4 + 1 - 4x3
= ( 6x3 - 2x3 - 4x3 ) + ( 2x4 - x4 ) + ( 3x2 - x2 ) + 1
= x4 + 2x2 + 1
Có : \(x^4\ge0\forall x\)
\(x^2\ge0\forall x\Rightarrow2x^2\ge0\)
=> \(x^4+2x^2+1\ge1>0\forall x\)
=> M(x) vô nghiệm ( đpcm )
Câu 2 : A(x) = m + nx + px( x - 1 )
A(0) = 5 <=> m + n.0 + p.0( 0 - 1 ) = 5
<=> n + 0 + 0 = 5
<=> m = 5
A(1) = -2 <=> 5 + 1n + 1p( 1 - 1 ) = -2
<=> 5 + n + 0 = -2
<=> 5 + n = -2
<=> n = -7
A(2) = 7 <=> 5 + (-7) . 2 + 2p( 2 - 1 ) = 7
<=> 5 - 14 + 2p . 1 = 7
<=> -9 + 2p = 7
<=> 2p = 16
<=> p = 8
Vậy A(x) = 5 + (-7)x + 8x( x - 1 )
Ta có:
f(x) = 2x6+3x2+5x3-2x2+4x4-x3+1-4x3-x4.
f(x)=2x6+4x4-x4+5x3-x3-4x3+3x2-2x2+1
f(x)=2x6+3x4+x2+1
Vì 2x6\(\ge\)0
3x4\(\ge\)0
x2\(\ge\)0
\(\Rightarrow\)2x6+3x4+x2+1\(\ge\)1
Do đó f(x) ko có nghiệm
a, Có \(2x^2\ge0\)
Vx\(2x^2+3\ge3>0\)
Vx=> 2x2+3 ko có nghiệm
b, Có \(-x^4\le0\)
Vx\(-3x^2\le0\)
Vx=> -x4-3x2-7 \(\le\) 7 <0
Vx=> -x4-3x2-7 ko có nghiệm