K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

a.Đặt 2x2+3=0 n  =>2x2=-3   =>x2=\(\frac{-3}{2}\)                       Vậy đa thức 2x2+3 ko có nghiệm                                                                            b,  Đặt -x4-3X2-7=0    =>                                                   

12 tháng 4 2016

a, Có \(2x^2\ge0\)  Vx

\(2x^2+3\ge3>0\) Vx

=> 2x2+3 ko có nghiệm

b, Có \(-x^4\le0\)  Vx

\(-3x^2\le0\)  Vx

=> -x4-3x2-7 \(\le\)  7 <0 Vx

=> -x4-3x2-7 ko có nghiệm

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe

17 tháng 4 2018

a, \(A\left(x\right)=\left(2x+3\right)^2+\left|x-7\right|\) 

Vì \(\hept{\begin{cases}\left(2x+3\right)\ge0\\\left|x-7\right|\ge0\end{cases}}\) => A(x)=0 <=> \(\hept{\begin{cases}2x+3=0\\x-7=7\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{3}{2}\\x=7\end{cases}}\)   ( Không xảy ra )

=> A(x) vô nghiệm.

b, \(B\left(x\right)=x^2-2x.5+25+1993=\left(x-5\right)^2+1993\ge1993>0\)

Nên B(x) vô nghiệm 

c, \(C\left(x\right)=x^2+2x\cdot\frac{3}{2}+\frac{9}{4}+\frac{11}{4}=\left(x+\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\)

Nên C(x) vô nghiệm

18 tháng 4 2018

a/ \(A\left(x\right)=\left(2x+3\right)^2+\left|x-7\right|\)

Ta có \(\left(2x+3\right)^2\ge0\)với mọi giá trị của x

\(\left|x-7\right|\ge0\)với mọi giá trị của x

=> \(\left(2x+3\right)^2+\left|x-7\right|\ge0\)với mọi giá trị của x

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}2x+3=0\\x-7=0\end{cases}}\)=> \(\hept{\begin{cases}2x=3\\x=7\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{3}{2}\\x=7\end{cases}}\)(loại)

Vậy A (x) vô nghiệm

7 tháng 4 2016

a) P(x)=3x- 5x+x + 2x- x - 4 + 3x+ x+ 7

= 3x2 - 5x3 + 2x3 + 3x3 + x - x + x4 - 4 + 7

= 3x2 + 0 + 0 + x4 + 3

= 3x2 + x4 + 3

b) Vì x2 > hoặc = 0 vs mọi x thuộc R

=))  3x  > hoặc = 3 vs mọi x thuộc R

=)) 3x2 + x4 + 3  > hoặc = x4 + 6 vs mọi x thuộc R

=)) 3x2 + x4 + 3  > 0

Vậy đa thức 3x2 + x4 + 3  vô nghiệm 

2 thieu đề

8 tháng 4 2016

Bạn Phan Cả Phát làm sai rồi, vì 3x2 có 2 trường hợp: 3x> 0 hoặc 3x= 0  vì xcó thể = 0 được. VÌ vậy nếu bạn bảo 3x>/= 3 là sai

10 tháng 4 2018

1

a, 4x2+4x+2

= 2x2+2x2+2x+2x+2

= 2x2+(2x2+2x)+(2x+2)

= 2x2+ 2x(x+1)+2(x+1)

= 2x2+(2x+2)(x+1)

= 2x2+2(x+1)(x+1)

=2x2+2(x+1)2

Để 2x2+2(x+1)2=0

=>\(\left\{{}\begin{matrix}2x^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)(vô lý)

=> đa thức 4x2+4x+2 vô nghiệm

10 tháng 4 2018

1

b, y2+6y+10

= y2+3y+3y+9+1

= y(3+y)+3(y+3)+1

= (y+3)(y+3)+1

= (y+3)2+1

Có (y+3)2\(\ge\)0;1>0

=> (y+3)2+1>0

=> y2+6y+10 vô nghiệm

31 tháng 5 2016

Câu 1:    a) x = 1 là nghiệm của đa thức f(x)

              b) x = -1 là nghiệm của đa thức g(x)

              c) x = 1 là nghiệm của đa thức h(x)

Câu 2: Số 1 là ngiệm của đa thức f(x)

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn: P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2 a) Xác định đa thức P(x) và Q(x) b) Tìm nghiệm của đa thức P(x) và Q(x) c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2 Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
a) Xác định đa thức P(x) và Q(x)
b) Tìm nghiệm của đa thức P(x) và Q(x)
c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
11 tháng 5 2019

Ta có: P(x)+ Q(x)= x^3+ x^2-4x+2(1)

P(x)- Q(x)= x^3-x^2+2x-2(2)

Lấy (1)-(2)

=> P(x)+ Q(x)- P(x)+ Q(x)

= 2Q(x)

=>2Q(x)=(x^3+x^2-4x+2)- (x^3-x^2+2x-2)

=>2Q(x)= 2x^2-6x-2

=> Q(x)= x^2-3x-1

Vậy P(x)=....