Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
a,xét n chẵn hiển nhiên A ko chia hết cho 2
n lẻ thì n^2 lẻ n lẻ
->A lẻ -> A ko chia hết cho 2
b,n^2 có tận cùng là:0,1,4,5,6,9
->n^2+n có tận cùng:0,2,8
->n^2+n+1 có tận cùng:1,3,9 ko chia hết cho 5
Nếu n = 2k ⇒ n2 + n + 1 không chia hết cho 2
Nếu n = 2k + 1 ⇒ n + 1 = 2k + 2 ⋮ 2 (1)
n = 2k + 1 không chia hết cho 2 nên
⇒ n2 = (2k + 1) không chia hết cho 2 (2)
Kết hợp (1) và (2) ta có: A = n2+n +1 không chia hết cho 2 với ∀n\(\in\)N
c/m: 10^n + 18n - 1 chia hết cho 27
10^n + 18n - 1= (10^n - 1) + 18n
10^n -1: vs n=2 10^2-1=99 (2 chữ số 9)
vs n=3 10^3-1=999 (3 chữ số 9)
10^n -1=99...9(n chữ số 9)
10^n -1 - 18n=99...9 + 18n
=9(11...1 + 2n) (11....1 có n chữ số 1)
=[9x3(11...1 + 2n)]/3 (Nhân 3 rồi chia cho 3)
=27[(11...1 + 2n)]/3]
Vậy ta cần chứng minh 11...1 + 2n chia hết cho 3 thì biểu thức trên sẽ chia hết cho 27
dấu hiệu của 1 số chia hết cho 3 là tổng các số trong số đó sẽ chia hết cho 3
Xét số 11...1=1+1+...+1 (n chữ số 1)
vs n=2 =>1+1=2=n
n=3 =>1+1+1=3=n
vậy tổng các chữ số của 11...1=1+1+...+1=n (n chữ số 1)
=>11...1+2n có tổng các chữ số =n+2n=3n hiển nhiên chia hết cho 3 (đpcm)
S=(5+52+53+54)+(55+56+57+58)+...........+(52009+52010+52011+52012)
=780+54(5+52+53+54)+...........+52008(5+52+53+54)
=65*12 + 54*65*12 + .......... + 52008*65*12
=65*12(1+54+...+52008) chia hết cho 65
=> S chia hết cho 65
ta co
A=4+4^2+4^3+...+4^24
=(4+4^2)+(4^3+4^4)+...+(4^23+4^24)
=(4+4^2).1+(4+4^2).4^22
=20.(1+4^2+...+4^22) chia het cho 20
ta co
A=4+4^2+4^3+...+4^23+4^24
=(4+4^2+4^3)+...+(4^22+4^23+4^24)
=21.(1+..+4^21) chia het cho 21 vi a chia het cho 20 va 21 ma ucln (20,21)=1 suy ra A chia het cho 20 va 21tuc la A chia het cho 420
tick nha
A chia hết cho 3 vì
A=2+2^2+2^3+...+2^10
A = ( 2 + 2^2 ) + (2^3 + 2^4 ) + ...+ (2^9 + 2^10)
A = 1 . (1 + 2) + 2^3 . ( 1 + 2 ) + ...+2^9 . ( 1+2 )
A = 1.3 + 2^3 . 3 +...+ 2^9 . 3
A = ( 1 + 2^3 + ...+ 2^9 ) . 3 chia hết cho 3 ( vì 3 chia hết cho 3)
vậy A chia hết cho 3
a) \(A=3+3^2+..+3^{60}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{59}\cdot\left(1+3\right)\)
\(A=4\cdot\left(3+3^3+...+3^{59}\right)\)
Vậy A chia hết cho 4
b) \(A=3+3^2+3^3+...+3^{60}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)
\(A=13\cdot\left(3+..+3^{58}\right)\)
Vậy A chia hết cho 13