K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2016

Đặt A = 20 + 21 + 22 + 23 + 24 + 25 + ..... +25n-6 + 25n-5 + 25n-4 + 25n-3 + 25n-2 + 25n-1

=> A = ( 20 + 21 + 22 + 23 + 24 + 25 ) + ..... + ( 25n-6 + 25n-5 + 25n-4 + 25n-3 + 25n-2 + 25n-1 )

=> A = 20 ( 1 + 21 + 22 + 23 + 24 ) + ..... + 25n-6 ( 1 + 21 + 22 + 23 + 2)

=> A = 1.31 + 25 .31 + ..... + 25n-6.31 

=> A = 31.( 1 + 25 + ..... + 25n-6 )

Vì 31 ⋮ 31 => A ⋮ 31 ( đpcm )

2 tháng 2 2016

\(\text{Đặt }A=\left(2^0+2^1+2^2+2^3+2^4\right)+...+\left(2^{5n-5}+2^{5n-4}+2^{5n-3}+2^{5n-2}+2^{5n-1}\right)\)

\(=\left(1+2 +4+8+16\right)+...+2^{5n-5}.\left(2^0+2^1+2^2+2^3+2^4\right)\)

\(=31+...+2^{5n-5}.31\)

\(=31.\left(1+...+2^{5n-5}\right)\text{chia hết cho 31}\left(đpcm\right)\)

22 tháng 2 2020

Đặt A=\(2^0+2^1+2^2+....+2^{5n-3}+2^{5n-2}+2^{5n-1}\)

\(\Leftrightarrow A=\left(2^0+2^1+2^2+2^3+2^4+2^5\right)+...+\left(2^{5n+2}+2^{5n+1}+2^{5n}+2^{5n-1}+2^{5n-2}+2^{5n-3}\right)\)

\(\Leftrightarrow A=2^0\left(1+2+2^2+2^3+2^4\right)+....+2^{5n+2}\left(1+2+2^2+2^3+2^4\right)\)

\(\Leftrightarrow A=2^0\cdot31+2^5\cdot31+....+2^{5n+2}\cdot31\)

\(\Leftrightarrow A=31\cdot\left(2^0+2^5+...+2^{5n+2}\right)\)

\(\Rightarrow A⋮31\left(đpcm\right)\)

11 tháng 11 2019

a. Câu hỏi của trương bảo ánh - Toán lớp 6 - Học toán với OnlineMath

b. Gọi: \(\left(5n+2;5n+3\right)=d\)

=> \(\hept{\begin{cases}5n+3⋮d\\5n+2⋮d\end{cases}}\)

=> \(\left(5n+3\right)-\left(5n+2\right)⋮d\)

=> \(1⋮d\)

=> d = 1.

Vậy ( 5n +2 ; 5n +3 ) = 1 hay 5n +2 và 5n + 3 nguyên tố cùng nhau.

31 tháng 12 2015

Đặt \(A=\left(1+2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8+2^9\right)+...+\left(2^{5n-5}+2^{5n-4}+2^{5n-3}+2^{5n-2}+2^{5n-1}\right)\)

\(=\left(1+2+4+8+16\right)+2^5.\left(1+2+4+8+16\right)+...+2^{5n-5}.\left(1+2+4+8+16\right)\)

\(=31+2^5.31+...+2^{5n-5}.31\)

\(=31.\left(1+2^5+...+2^{5n-5}\right)\text{ chia hết cho 31}\)

=> A chia hết cho 31 (đpcm).