Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\left(1+2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8+2^9\right)+...+\left(2^{5n-5}+2^{5n-4}+2^{5n-3}+2^{5n-2}+2^{5n-1}\right)\)
\(=\left(1+2+4+8+16\right)+2^5.\left(1+2+4+8+16\right)+...+2^{5n-5}.\left(1+2+4+8+16\right)\)
\(=31+2^5.31+...+2^{5n-5}.31\)
\(=31.\left(1+2^5+...+2^{5n-5}\right)\text{ chia hết cho 31}\)
=> A chia hết cho 31 (đpcm).
\(\text{Đặt }A=\left(2^0+2^1+2^2+2^3+2^4\right)+...+\left(2^{5n-5}+2^{5n-4}+2^{5n-3}+2^{5n-2}+2^{5n-1}\right)\)
\(=\left(1+2 +4+8+16\right)+...+2^{5n-5}.\left(2^0+2^1+2^2+2^3+2^4\right)\)
\(=31+...+2^{5n-5}.31\)
\(=31.\left(1+...+2^{5n-5}\right)\text{chia hết cho 31}\left(đpcm\right)\)
Đặt A = 20 + 21 + 22 + 23 + 24 + 25 + ..... +25n-6 + 25n-5 + 25n-4 + 25n-3 + 25n-2 + 25n-1
=> A = ( 20 + 21 + 22 + 23 + 24 + 25 ) + ..... + ( 25n-6 + 25n-5 + 25n-4 + 25n-3 + 25n-2 + 25n-1 )
=> A = 20 ( 1 + 21 + 22 + 23 + 24 ) + ..... + 25n-6 ( 1 + 21 + 22 + 23 + 24 )
=> A = 1.31 + 25 .31 + ..... + 25n-6.31
=> A = 31.( 1 + 25 + ..... + 25n-6 )
Vì 31 ⋮ 31 => A ⋮ 31 ( đpcm )
Đặt A=\(2^0+2^1+2^2+....+2^{5n-3}+2^{5n-2}+2^{5n-1}\)
\(\Leftrightarrow A=\left(2^0+2^1+2^2+2^3+2^4+2^5\right)+...+\left(2^{5n+2}+2^{5n+1}+2^{5n}+2^{5n-1}+2^{5n-2}+2^{5n-3}\right)\)
\(\Leftrightarrow A=2^0\left(1+2+2^2+2^3+2^4\right)+....+2^{5n+2}\left(1+2+2^2+2^3+2^4\right)\)
\(\Leftrightarrow A=2^0\cdot31+2^5\cdot31+....+2^{5n+2}\cdot31\)
\(\Leftrightarrow A=31\cdot\left(2^0+2^5+...+2^{5n+2}\right)\)
\(\Rightarrow A⋮31\left(đpcm\right)\)
Bài 2:
Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)
1:
\(n^2+4n+3\)
\(=n^2+3n+n+3\)
\(=\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
Vì k+1;k+2 là hai số nguyên liên tiếp
nên \(\left(k+1\right)\left(k+2\right)⋮2\)
=>\(4\left(k+1\right)\left(k+2\right)⋮8\)
hay \(n^2+4n+3⋮8\)
2: \(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)
=>\(k\left(k+1\right)\left(k+2\right)⋮6\)
=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)
hay \(n^3+3n^2-n-3⋮48\)