Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x+\frac{2}{3}=\frac{4}{5}\)
\(x=\frac{4}{5}-\frac{2}{3}\)
\(x=\frac{2}{15}\)
b) \(x-\frac{2}{7}=\frac{7}{21}\)
\(x=\frac{7}{21}+\frac{2}{7}\)
\(x=\frac{13}{21}\)
c) \(x-\frac{3}{4}=\frac{-8}{11}\)
\(x=\frac{-8}{21}+\frac{3}{4}\)
\(x=\frac{31}{84}\)
d) \(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\frac{2}{5}+x=\frac{11}{12}-\frac{2}{3}\)
\(\frac{2}{5}+x=\frac{1}{4}\)
\(x=\frac{1}{4}-\frac{2}{5}\)
\(x=\frac{-3}{20}\)
c. x+y+9=xy-7
=> 9+7=xy-x-y
=> xy-x-y=16
=> x(y-1)-(y-1)=17
=> (y-1)(x-1)=17
Mà x,y là số tự nhiên
=> (y-1)(x-1)=1.17=17.1
•y-1=1;x-1=17=> y=2; x=18
• y-1=17; x-1=1=> y=18; x=2
Vậy (x;y) là (18;2) hoặc (2;18)
a)Ta có
25 - y^2 = 8(x-2009)^2
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0
Mặt khác do
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
y^2 = 1, y^2 = 9, y^2 = 25
y^2 = 1; (x-2009)^2 = 3 (loại)
y^2 = 9; (x-2009)^2 = 2 (loại)
y^2 = 25; (x-2009)^2 = 0; x = 2009
Vậy pt có nghiệm sương (2009 , 5)
mk sắp xếp luôn ko ghi lại đề nhé
a)\(\frac{-27}{28};\frac{-18}{19};\frac{-7}{8};\frac{-3}{4};\frac{-2}{3}\)
b)\(\frac{-27}{53};\frac{-15}{31};\frac{1}{173};0;\frac{1998}{1997}\)
tk mk nha
Có: \(x+y+9=xy-7\)
\(\Leftrightarrow x+16=y\left(x-1\right)\)
\(\Leftrightarrow\frac{x+16}{x-1}=y\)
\(\Leftrightarrow y=1+\frac{17}{x-1}\in Z\Leftrightarrow x-1\inƯ\left(17\right)\)
Bn giải x ra rồi tính y
b) \(x^3y=xy^3+1997\)
\(\Leftrightarrow xy\left(x-y\right)\left(x+y\right)=1997\)
Phân tích 1997=1*1997 và ngược lại chia TH giải
a 25 - y^2 = 8(x-2009)
=> 5^2 - y^2 = 8x - 8*2009
=> (5^2 - y^2) - ( 8x - 8*2009) = 0
=> 5^2 - y^2 = 0 và 8x - 8*2009 = 0
=> 5^2 = y^2 và 8x = 8*2009
=> y=5 và x=2009