\(25-y^2=8\left(x-2009\right)\)

 

b

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

\(25-y^2=8\left(x-2009\right)\)

\(25-y^2=8x-16072\)

25 tháng 11 2017

a 25 - y^2 = 8(x-2009)

=> 5^2 - y^2 = 8x - 8*2009

=> (5^2 - y^2) - ( 8x - 8*2009) = 0

=> 5^2 - y^2 = 0 và 8x - 8*2009 = 0

=> 5^2 = y^2 và 8x = 8*2009

=> y=5 và x=2009

23 tháng 6 2019

Có: \(x+y+9=xy-7\)

\(\Leftrightarrow x+16=y\left(x-1\right)\)

\(\Leftrightarrow\frac{x+16}{x-1}=y\)

\(\Leftrightarrow y=1+\frac{17}{x-1}\in Z\Leftrightarrow x-1\inƯ\left(17\right)\)

Bn giải x ra rồi tính y

b) \(x^3y=xy^3+1997\)

\(\Leftrightarrow xy\left(x-y\right)\left(x+y\right)=1997\)

Phân tích 1997=1*1997 và ngược lại chia TH giải

25 tháng 11 2017

c. x+y+9=xy-7

=> 9+7=xy-x-y

=> xy-x-y=16

=> x(y-1)-(y-1)=17

=> (y-1)(x-1)=17 

Mà x,y là số tự nhiên 

=> (y-1)(x-1)=1.17=17.1

•y-1=1;x-1=17=> y=2; x=18

• y-1=17; x-1=1=> y=18; x=2

Vậy (x;y) là (18;2) hoặc (2;18)

18 tháng 2 2019

a)Ta có 
25 - y^2 = 8(x-2009)^2 
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0 
Mặt khác do 
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn 
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe) 
Do vậy chỉ tồn tại các giá trị sau 
y^2 = 1, y^2 = 9, y^2 = 25 
y^2 = 1; (x-2009)^2 = 3 (loại) 
y^2 = 9; (x-2009)^2 = 2 (loại) 
y^2 = 25; (x-2009)^2 = 0; x = 2009 
Vậy pt có nghiệm sương (2009 , 5) 

13 tháng 3 2018

\(a,25-y^2=8\left(x-2009\right)^2\)

Ta có : \(8\left(x-2009\right)^2\ge0\forall x\)

\(\Rightarrow25-y^2\ge0\forall y\)

\(\Leftrightarrow0< y^2\le25\\ \Rightarrow y\in\left\{1;2;3;4;5\right\}\)

\(25-y^2⋮8\left(Vìx\in Z\right)\)

\(\Rightarrow y\in\left\{1;3;5\right\}\)(t/mãn y ∈ Z)

TH1: Với y = 1, ta có :

\(25-y^2=8\left(x-2009\right)^2\)

\(\Leftrightarrow25-1^2=8\left(x-2009\right)^2\)

\(\Leftrightarrow8\left(x-2009\right)^2=24\)

\(\Leftrightarrow\left(x-2009\right)^2=3\left(Vôlí\right)\)

⇒ TH1 loại

TH2: Với y = 3, ta có :

\(25-y^2=8\left(x-2009\right)^2\)

\(\Leftrightarrow25-3^2=8\left(x-2009\right)^2\)

\(\Leftrightarrow8\left(x-2009\right)^2=16\)

\(\Leftrightarrow\left(x-2009\right)^2=2\left(Vôlí\right)\)

⇒ TH2 loại

TH3: Với y = 5, ta có :

\(25-y^2=8\left(x-2009\right)^2\)

\(\Leftrightarrow25-5^2=8\left(x-2009\right)^2\)

\(\Leftrightarrow8\left(x-2009\right)^2=0\)

\(\Leftrightarrow\left(x-2009\right)^2=0\\ \Rightarrow x-2009=0\\ \Rightarrow x=2009\left(t/mx\in Z\right)\)

Vậy y = 5, x = 2009

\(b,x^3y=xy^3+1997\\ \Leftrightarrow x^3y-xy^3=1997\\ \Leftrightarrow xy\left(x^2-y^2\right)=1997\\ \Leftrightarrow xy\left(x+y\right)\left(x-y\right)=1997\)

Ta có : \(\left\{{}\begin{matrix}1997làsốnguyêntố\\xy\left(x+y\right)\left(x-y\right)làhợpsố\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)\in\varnothing\)

Vậy không tìm được x và y thõa mãn đề bài.

a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)

hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)

d: =>x+1;x-2 khác dấu

Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)

Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)

e: =>x-2>0 hoặc x+2/3<0

=>x>2 hoặc x<-2/3

13 tháng 6 2015

b)xy=x:y=>y2=1

=>y=1 hoặc y=-1

*)y=1

=>x+1=x

=>0x=-1(L)

*)y=-1

=>x-1=-x

=>2x=1

=>x=1/2

              Vậy y=-1 x=1/2

c)xy=x:y=>y2=1

=>y=1 hoặc y=-1

*)y=1

=>x-1=x

=>0x=1(L)

*)y=-1

=>x+1=-x

=>2x=-1

=>x=-1/2

Vậy y=-1 x=-1/2

d)x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5=9

=>(x+y+z)2=9

=>x+y+z=3 hoặc x+y+z=-3

*)x+y+z=3

=>x=-5:3=-5/3

y=9:3=3

z=5:3=5/3

*)x+y+z=-3

=>x=-5:(-3)=5/3

y=9:(-3)=-3

z=5:(-3)=-5/3