Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a/ \(x^2+\left(y-10\right)^2=0\)
vì: \(\left\{{}\begin{matrix}x^2\ge0\forall x\\\left(y-10\right)^4\ge0\forall y\end{matrix}\right.\)
=> Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y-10=0\Rightarrow y=10\end{matrix}\right.\)
vậy......
b/ \(\left(0,5x-5\right)^{20}+\left(y^2-0,25\right)^{10}\le0\)
vì: \(\left\{{}\begin{matrix}\left(0,5x-5\right)^{20}\ge0\forall x\\\left(y^2-0,25\right)^2\ge0\forall y\end{matrix}\right.\)=> \(\left(0,5x-5\right)^{20}+\left(y^2-0,25\right)^{10}\ge0\)
=> Dấu ''='' xảy ra khi :
\(\left\{{}\begin{matrix}0,5x-5=0\\y^2-0,25=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{0,5}=10\\y^2=0,25\Rightarrow\left[{}\begin{matrix}y=0,5\\y=-0,5\end{matrix}\right.\end{matrix}\right.\)
Vậy........
2/ Ta có: \(2011\equiv1\left(mod10\right)\)
\(2011^{201}\equiv1^{201}\equiv1\left(mod10\right)\);
Có: \(1997^3\equiv3\left(mod10\right)\)
\(\left(1997^3\right)^4\equiv3^4\equiv1\left(mod10\right)\)
\(\left(1997^{12}\right)^{14}\equiv1^{14}\equiv1\left(mod10\right)\) hay \(1997^{168}\equiv1\left(mod10\right)\)
=> \(2011^{201}-1997^{168}\equiv1-1\equiv0\left(mod10\right)\)
hay \(2011^{201}-1997^{168}\) chia hết cho 10
=> Đpcm
Có: \(x+y+9=xy-7\)
\(\Leftrightarrow x+16=y\left(x-1\right)\)
\(\Leftrightarrow\frac{x+16}{x-1}=y\)
\(\Leftrightarrow y=1+\frac{17}{x-1}\in Z\Leftrightarrow x-1\inƯ\left(17\right)\)
Bn giải x ra rồi tính y
b) \(x^3y=xy^3+1997\)
\(\Leftrightarrow xy\left(x-y\right)\left(x+y\right)=1997\)
Phân tích 1997=1*1997 và ngược lại chia TH giải
Lời giải:
a)
Ta có:
\(1991\equiv 1\pmod {10}\Rightarrow 1991^{1997}\equiv 1^{1997}\equiv 1\pmod {10}(1)\)
\(1997\equiv 7\pmod {10}\Rightarrow 1997^{1996}\equiv 7^{1996}\pmod {10}(2)\)
Mà \(7^2\equiv -1\pmod {10}\Rightarrow 7^{1996}\equiv (-1)^{998}\equiv 1\pmod {10}(3)\)
Từ \((1);(2);(3)\Rightarrow 1991^{1997}-1997^{1996}\equiv 1-1\equiv 0\pmod {10}\) (đpcm)
b)
\(2^9+2^{99}=2^9(1+2^{90})\)
Ta thấy $2^{10}=1024\equiv -1\pmod {25}$
$\Rightarrow 2^{90}\equiv (-1)^9\equiv -1\pmod {25}$
$\Rightarrow 1+2^{90}\equiv 0\pmod {25}$ hay $1+2^{90}\vdots 25$
Mà $2^9\vdots 4$
Do đó:
$2^9+2^{99}=2^9(1+2^{90})\vdots 100$ (đpcm)
c. x+y+9=xy-7
=> 9+7=xy-x-y
=> xy-x-y=16
=> x(y-1)-(y-1)=17
=> (y-1)(x-1)=17
Mà x,y là số tự nhiên
=> (y-1)(x-1)=1.17=17.1
•y-1=1;x-1=17=> y=2; x=18
• y-1=17; x-1=1=> y=18; x=2
Vậy (x;y) là (18;2) hoặc (2;18)
a)Ta có
25 - y^2 = 8(x-2009)^2
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0
Mặt khác do
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
y^2 = 1, y^2 = 9, y^2 = 25
y^2 = 1; (x-2009)^2 = 3 (loại)
y^2 = 9; (x-2009)^2 = 2 (loại)
y^2 = 25; (x-2009)^2 = 0; x = 2009
Vậy pt có nghiệm sương (2009 , 5)
a) \(x+\frac{2}{3}=\frac{4}{5}\)
\(x=\frac{4}{5}-\frac{2}{3}\)
\(x=\frac{2}{15}\)
b) \(x-\frac{2}{7}=\frac{7}{21}\)
\(x=\frac{7}{21}+\frac{2}{7}\)
\(x=\frac{13}{21}\)
c) \(x-\frac{3}{4}=\frac{-8}{11}\)
\(x=\frac{-8}{21}+\frac{3}{4}\)
\(x=\frac{31}{84}\)
d) \(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\frac{2}{5}+x=\frac{11}{12}-\frac{2}{3}\)
\(\frac{2}{5}+x=\frac{1}{4}\)
\(x=\frac{1}{4}-\frac{2}{5}\)
\(x=\frac{-3}{20}\)
\(a,25-y^2=8\left(x-2009\right)^2\)
Ta có : \(8\left(x-2009\right)^2\ge0\forall x\)
\(\Rightarrow25-y^2\ge0\forall y\)
\(\Leftrightarrow0< y^2\le25\\ \Rightarrow y\in\left\{1;2;3;4;5\right\}\)
Mà \(25-y^2⋮8\left(Vìx\in Z\right)\)
\(\Rightarrow y\in\left\{1;3;5\right\}\)(t/mãn y ∈ Z)
TH1: Với y = 1, ta có :
\(25-y^2=8\left(x-2009\right)^2\)
\(\Leftrightarrow25-1^2=8\left(x-2009\right)^2\)
\(\Leftrightarrow8\left(x-2009\right)^2=24\)
\(\Leftrightarrow\left(x-2009\right)^2=3\left(Vôlí\right)\)
⇒ TH1 loại
TH2: Với y = 3, ta có :
\(25-y^2=8\left(x-2009\right)^2\)
\(\Leftrightarrow25-3^2=8\left(x-2009\right)^2\)
\(\Leftrightarrow8\left(x-2009\right)^2=16\)
\(\Leftrightarrow\left(x-2009\right)^2=2\left(Vôlí\right)\)
⇒ TH2 loại
TH3: Với y = 5, ta có :
\(25-y^2=8\left(x-2009\right)^2\)
\(\Leftrightarrow25-5^2=8\left(x-2009\right)^2\)
\(\Leftrightarrow8\left(x-2009\right)^2=0\)
\(\Leftrightarrow\left(x-2009\right)^2=0\\ \Rightarrow x-2009=0\\ \Rightarrow x=2009\left(t/mx\in Z\right)\)
Vậy y = 5, x = 2009
\(b,x^3y=xy^3+1997\\ \Leftrightarrow x^3y-xy^3=1997\\ \Leftrightarrow xy\left(x^2-y^2\right)=1997\\ \Leftrightarrow xy\left(x+y\right)\left(x-y\right)=1997\)
Ta có : \(\left\{{}\begin{matrix}1997làsốnguyêntố\\xy\left(x+y\right)\left(x-y\right)làhợpsố\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)\in\varnothing\)
Vậy không tìm được x và y thõa mãn đề bài.