Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : \(A=\left(sin\alpha+cos\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2\)
\(\Leftrightarrow A=sin^2\alpha+2sin\alpha.cos\alpha+cos^2\alpha+sin^2\alpha-2sin\alpha.cos\alpha+cos^2\alpha\)
\(\Leftrightarrow A=2\left(sin^2\alpha+cos^2\alpha\right)=2.1=2\) (không phụ thuộc vào \(\alpha\))
\(\Rightarrow\left(đpcm\right)\)
\(B=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha\left(sin^2\alpha+cos^2\alpha\right)+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3=1^3=1\) (không phụ thuộc vào \(\alpha\) ) \(\Rightarrow\left(đpcm\right)\)
a/A = sin2 + 2. sin.cos + cos2 + sin2 -2cos.sin + cos2= 2
Tớ không biết ghi anpha nên ..
Bước đến nhà em bóng xế tà
Đứng chờ năm phút bố em ra
Lơ thơ phía trước vài con chó
Lác đác đằng sau chiếc chổi chà
Sợ quá anh chuồn quên đôi dép
Bố nàng ngoác mỏ đứng chửi cha
Phen này nhất quyết thuê cây kiếm
Trở về chém ổng đứt làm ba
thấy hay thì
A B C c b a
Xét tam giác vuông có ba cạnh AB, AC , BC lần lượt là c,b,a
a) Ta có : \(tan\alpha=\frac{b}{c}=\frac{\frac{b}{a}}{\frac{c}{a}}=\frac{sin\alpha}{cos\alpha}\)
\(cotg\alpha=\frac{c}{b}=\frac{\frac{c}{a}}{\frac{b}{a}}=\frac{cos\alpha}{sin\alpha}\)
\(tan\alpha.cotg\alpha=\frac{b}{c}.\frac{c}{b}=1\)
b) Ta có : \(sin^2\alpha=\frac{b^2}{a^2},cos^2\alpha=\frac{c^2}{a^2}\Rightarrow sin^2\alpha+cos^2\alpha=\frac{b^2+c^2}{a^2}=\frac{a^2}{a^2}=1\)
áp dụng công thức sin2a+cos2a=1
A= sin2a +cos2a-2sina.cosa-sin2a-cos2a+2sina.cosa = 0
B=(sỉn2a+cos2a)2 =12 =1
C= cos2a(cos2a+sin2a)+ sin2a=cos2a+sin2a=1
D=sin2a(sin2p+cos2p)+cos2a=sin2a+cos2a=1
E= (sin2a+cos2a)(sin4a-sin2a.cos2a+cos4a)+3sin2a.cos2a
=sin4a+2sin2a.cos2a+ cos4a=(sin2a+cos2a)2=1
\(B=\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha\right)^3+\left(\cos^2\alpha\right)^3+3\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha+\cos^2\alpha\right)\left(\sin^4\alpha+\cos^4\alpha-\sin^2\alpha.\cos^2\alpha\right)+3\sin^2\alpha.\cos^2\alpha\)
\(B=\sin^4\alpha+\cos^4\alpha-\sin^2\alpha.\cos^2\alpha+3\sin^2\alpha.\cos^2\alpha\)(vì \(\sin^2\alpha+\cos^2\alpha=1\))
\(B=\left(\sin^2\alpha\right)^2+\left(\cos^2\alpha\right)^2+2.\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)(vì \(\sin^2\alpha+\cos^2\alpha=1\))
Vậy B = 1
A= \(\left(\sin^2a\right)^3+\left(cos^2a\right)^3+3sin^2acos^2a\)
=\(\left(sin^2a+cos^2a\right)\left(sin^4a-cos^2asin^2a+cos^4a\right)+3sin^2acos^2a\)
\(sin^4a+2sin^2acos^2a+cos^4a=\left(sin^2+cos^2\right)^2=1^2=1\)
Hè năm ngoái tôi bị mắc dạng này ^^ Và tôi tự mò ra .... vài thứ...
(sina^2)^3+sosa^2)^3 = (sina^2 +cosa^2)(sina^4 -sina^2cosa^2 + cos^4 ) Chú ý sina^2 +cosa^2=1
= > B=(sina^4 -sina^2cosa^2 + cos^4 )+ 3 sina^2cosa^2 = ( sina^2 + cosa^2)^2 = 1^2 = 1 ^^
Lưu ý: sin2 a + cos2 a = 1
a. Tách ra dễ dàng nhận được biểu thức = 2(sin2 a + cos2 a) = 2 => không phụ thuộc vào a.
b. sin6 a + cos6 a = (sin2 a + cos2 a)(sin4 a - cos2 a.sin2 a + cos4 a) = sin4 a - cos2 a.sin2 a + cos4 a
=> Biểu thức = sin4 a - sin2 a.cos2 a + cos4 a + 3.sin2 a*cos2 a = sin4 a + 2.sin2 a.cos2 a + cos4 a = (sin2 a + cos2 a)2 = 1
a) = sina2 +2sinacosa +cosa2 + sina2 -2sinacosa + cosa2 = 1+1 = 2 ( k phụ thuộc vào a)