K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2018

Ta có :

\(VT=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)

\(=\left(xy+y^2+xz+yz\right)\left(z+x\right)+xyz\)

\(=xyz+y^2z+xz^2+yz^2+x^2y+y^2x+x^2z+xyz+xyz\)

\(=\left(x^2y+xyz+x^2z\right)+\left(y^2x+y^2z+xyz\right)+\left(xyz+z^2y+z^2x\right)\)\(=x\left(xy+yz+zx\right)+y\left(xy+yz+zx\right)+z\left(xy+yz+zx\right)\)

\(=\left(x+y+z\right)\left(xy+yz+zx\right)=VP\)

\(\left(đpcm\right)\)

:D

2 tháng 8 2019

Đẳng thức ban đầu \(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=4x^2+4y^2+4z^2-4xy-4yz-4zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Leftrightarrow x=y=z\)

4 tháng 10 2017

Ta có:

\(\left(x+y+z\right)\left(xy+yz+zx\right)=xyz\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow x=-y;y=-z;z=-x\)

Với \(x=-y\)

\(\Rightarrow x^{2017}+y^{2017}+z^{2017}=z^{2017}=\left(x+y+z\right)^{2017}\)

Tương tự cho 2 trường hợp còn lại

26 tháng 9 2017

a) \(\left(x-y\right)^2+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y\right)^2+\left(y-z+z-x\right)\left[\left(y-z\right)^2-\left(y-z\right)\left(z-x\right)+\left(z-x\right)^2\right]\)

\(=\left(x-y\right)^2+\left(y-x\right)\left(x^2+y^2+3z^2-3yz+xy-3xz\right)\)

\(=\left(x-y\right)\left(x-y-x^2-y^2-3z^2+3yz-xy+3xz\right)\)

Cô nghĩ phân tích đa thức này sẽ đẹp hơn:

\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3\)

\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3\)

\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(z-x\right)^2\right]\)

\(=\left(x-z\right)\left(3y^2-3xy+3zx-3xyz\right)\)

\(=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

b) \(\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)

\(=\left(xy+yz+zx\right)\left(x+y+z\right)-xyz\)

\(=xy\left(x+y+z\right)+\left(yz+zx\right)\left(x+y+z\right)-xyz\)

\(=xy\left(x+y+z-z\right)+\left(yz+zx\right)\left(x+y+z\right)\)

\(=xy\left(x+y\right)+z\left(y+x\right)\left(x+y+z\right)\)

\(=\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)

\(=\left(x+y\right)\left(xy+zx+zy+z^2\right)\)

\(=\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

6 tháng 7 2022

a) \left(x-y\right)^2+\left(y-z\right)^3+\left(z-x\right)^3(xy)2+(yz)3+(zx)3

=\left(x-y\right)^2+\left(y-z+z-x\right)\left[\left(y-z\right)^2-\left(y-z\right)\left(z-x\right)+\left(z-x\right)^2\right]=(xy)2+(yz+zx)[(yz)2(yz)(zx)+(zx)2]

=\left(x-y\right)^2+\left(y-x\right)\left(x^2+y^2+3z^2-3yz+xy-3xz\right)=(xy)2+(yx)(x2+y2+3z23yz+xy3xz)

=\left(x-y\right)\left(x-y-x^2-y^2-3z^2+3yz-xy+3xz\right)=(xy)(xyx2y23z2+3yzxy+3xz

\left(x-y\right)^3+\left(y-z\right)^3+\left

 

=\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3


 

=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\l

 

=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(z-x\

 

=\left(x-z\right)\left(

=3\left(x-y\right)\lefb) \left(x+y+z\right)\left(xy+yz+zx\right)-xyzb)(x+y+z)(xy+yz+zx)xyz

=\left(xy+yz+zx\right)\left(x+y+z\right)-xyz=(xy+yz+zx)(x+y+z)xyz

=xy\left(x+y+z\right)+\left(yz+zx\right)\left(x+y+z\right)-xyz=xy(x+y+z)+(yz+zx)(x+y+z)xyz

=xy\left(x+y+z-z\right)+\left(yz+zx\right)\left(x+y+z\right)=xy(x+y+zz)+(yz+zx)(x+y+z)

=xy\left(x+y\right)+z\left(y+x\right)\left(x+y+z\right)=xy(x+y)+z(y+x)(x+y+z)

=\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]=(x+y)[xy+z(x+y+z)]

=\left(x+y\right)\left(xy+zx+zy+z^2\right)=(x+y)(xy+zx+zy+z2)

=\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]=(x+y)[x(y+z)+z(y+z)]

=\left(x+y\right)\left(y+z\right)\left(z+x\right)=(x+y)(y+z)(z+x)

 
19 tháng 8 2018

Mang hết bài tập lên hỏi à, sao nhiều thế

19 tháng 8 2018

Ơ thế liên quan l đến cậu à Thành? Hay nên gọi là Thánh chứ nhỉ? :) Có ai khiến cậu trả lời không mà kêu lắm :> Đấy là bài tập chỗ học thêm bên ngoài, đ' làm được thì lên hỏi thắc mắc làm l gì :> Đ' hỏi bài tập ở lớp thì thôi đừng ngồi chõ mồm vào :>