K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

a) \(\left(x-y\right)^2+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y\right)^2+\left(y-z+z-x\right)\left[\left(y-z\right)^2-\left(y-z\right)\left(z-x\right)+\left(z-x\right)^2\right]\)

\(=\left(x-y\right)^2+\left(y-x\right)\left(x^2+y^2+3z^2-3yz+xy-3xz\right)\)

\(=\left(x-y\right)\left(x-y-x^2-y^2-3z^2+3yz-xy+3xz\right)\)

Cô nghĩ phân tích đa thức này sẽ đẹp hơn:

\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3\)

\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3\)

\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(z-x\right)^2\right]\)

\(=\left(x-z\right)\left(3y^2-3xy+3zx-3xyz\right)\)

\(=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

b) \(\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)

\(=\left(xy+yz+zx\right)\left(x+y+z\right)-xyz\)

\(=xy\left(x+y+z\right)+\left(yz+zx\right)\left(x+y+z\right)-xyz\)

\(=xy\left(x+y+z-z\right)+\left(yz+zx\right)\left(x+y+z\right)\)

\(=xy\left(x+y\right)+z\left(y+x\right)\left(x+y+z\right)\)

\(=\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)

\(=\left(x+y\right)\left(xy+zx+zy+z^2\right)\)

\(=\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

6 tháng 7 2022

a) \left(x-y\right)^2+\left(y-z\right)^3+\left(z-x\right)^3(xy)2+(yz)3+(zx)3

=\left(x-y\right)^2+\left(y-z+z-x\right)\left[\left(y-z\right)^2-\left(y-z\right)\left(z-x\right)+\left(z-x\right)^2\right]=(xy)2+(yz+zx)[(yz)2(yz)(zx)+(zx)2]

=\left(x-y\right)^2+\left(y-x\right)\left(x^2+y^2+3z^2-3yz+xy-3xz\right)=(xy)2+(yx)(x2+y2+3z23yz+xy3xz)

=\left(x-y\right)\left(x-y-x^2-y^2-3z^2+3yz-xy+3xz\right)=(xy)(xyx2y23z2+3yzxy+3xz

\left(x-y\right)^3+\left(y-z\right)^3+\left

 

=\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3


 

=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\l

 

=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(z-x\

 

=\left(x-z\right)\left(

=3\left(x-y\right)\lefb) \left(x+y+z\right)\left(xy+yz+zx\right)-xyzb)(x+y+z)(xy+yz+zx)xyz

=\left(xy+yz+zx\right)\left(x+y+z\right)-xyz=(xy+yz+zx)(x+y+z)xyz

=xy\left(x+y+z\right)+\left(yz+zx\right)\left(x+y+z\right)-xyz=xy(x+y+z)+(yz+zx)(x+y+z)xyz

=xy\left(x+y+z-z\right)+\left(yz+zx\right)\left(x+y+z\right)=xy(x+y+zz)+(yz+zx)(x+y+z)

=xy\left(x+y\right)+z\left(y+x\right)\left(x+y+z\right)=xy(x+y)+z(y+x)(x+y+z)

=\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]=(x+y)[xy+z(x+y+z)]

=\left(x+y\right)\left(xy+zx+zy+z^2\right)=(x+y)(xy+zx+zy+z2)

=\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]=(x+y)[x(y+z)+z(y+z)]

=\left(x+y\right)\left(y+z\right)\left(z+x\right)=(x+y)(y+z)(z+x)

 
2 tháng 7 2021

a) xy(x + y) + yz(y + z) + xz(z + x) + 3xyz

= xy(X + y + z)  + yz(x + y + z) + xz(X + y + z)

= (x + y +z)(xy + yz+ xz)

b) xy(x + y) - yz(y + z) - xz(z - x)

= x2y + xy2 - y2z - yz2 - xz2 + x2z

= x2(y + z) - yz(y + z) + x(y2 - z2)

= x2(y + z) - yz(y + z) + x(y + z)(y - z)

= (y + z)(x2 - yz + xy - xz)

= (y + z)[x(x + y) - z(x + y)]

= (y + z)(x + y)(x - z)

c) x(y2 - z2) + y(z2 - x2) + z(x2 - y2)

 = x(y - z)(y + z) + yz2 - yx2 + x2z - y2z

= x(y - z)(y + z) - yz(y - z) - x2(y - z)

= (y - z)((xy + xz - yz - x2)

= (y - z)[x(y - x) - z(y - x)]

= (y - z)(x - z)(y -x) 

10 tháng 11 2017

= xyx + xyy - yzy + yzz - zx( z - x ) 

= y( x^2 + xy ) - y( zy + zz ) - zx( z - x ) 

= y[ ( x^2 + xy ) - ( zy + zz ) ] - zx( z - x ) 

= y( x^2 + xy - zy - zz ) - zx( z - x ) 

= y[ x( x + y ) - z( y - z ) ] - zx( z - x ) 

P/S : bí rùi . ngu phần này lắm . 

10 tháng 11 2017

xy x dc goi la một đương f thẳng nên nó sẻ dc goi 

26 tháng 9 2019

\(A=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2-\left(xy+yz+zx\right)^2\left(1\right)\)

Đặt \(x^2+y^2+z^2=a\)

\(xy+yz+zx=b\Rightarrow2\left(xy+yz+zx\right)=2b\)

\(\Rightarrow a+2b=\left(x+y+z\right)^2\)

Kết hợp (1) ta được : \(A=a\left(a+2b\right)+b^2\)

                                      \(=a^2+2ab+b^2\)

                                     \(=\left(a+b\right)^2\)

                                      \(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)

8 tháng 10 2018

Đa thức trên tương đương với đa thức:

\(\left(xy\left(x+y\right)+xyz\right)+\left(yz\left(y+z\right)+xyz\right)+\left(xz\left(x+z\right)+xyz\right)\)

=\(xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+y+z\right)\)

=\(\left(x+y+z\right)\left(xy+yz+xz\right)\)

8 tháng 10 2018

xy(x + y) + yz( y + z )+ zx( z + x ) + 3xyz

=xy(x + y) + xyz + yz(y + z) + xyz + xz(x + z)+xyz

=zy(x + y + z) + yz(x + y + z) + xz(x + y + z)

=(x + y + z)(xy + yz + zx)

chúc bn hok tốt