Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\rightarrow\left(a;b;c\right)\) thì abc = 1. BĐT
\(\Leftrightarrow a^2+b^2+c^2\ge a+b+c\). Mà \(VT=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\).
Do đó ta chỉ cần chứng minh \(\frac{\left(a+b+c\right)^2}{3}\ge a+b+c\).Hay:
\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)
\(\Leftrightarrow f\left(t\right)=t^2-3t\ge0\) với \(t=a+b+c\ge3\sqrt[3]{abc}=3\). Điều này hiển nhiên đúng do
\(f\left(t\right)=t^2-3t=t\left(t-3\right)\ge t\left(3-3\right)=0\) với mọi t > 3
Ta có đpcm. Đẳng thức xảy ra khi a = b = c = 1 hay x = y = z
P/s: Sai thì chịu
Áp dụng Bunhiacopxki dạng phân thức:
\(VT=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\ge\frac{\left(\sqrt{2}.3\right)^2}{2\left(x+y+z\right)}=\frac{9}{x+y+z}\)
Dấu "=" khi x = y = z > 0
cũng là Cauchy-Schwarz dạng Engel nhưng làm khác idol :))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{\left(1+1+1\right)^2}{x+y+y+z+z+x}=\frac{9}{2\left(x+y+z\right)}\)
=> \(2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{9}{2\left(x+y+z\right)}\cdot2=\frac{9}{x+y+z}\left(đpcm\right)\)
Đẳng thức xảy ra <=> x=y=z
Áp dụng BĐT Cauchy cho 3 số dương, ta được:
\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)
\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\sqrt[3]{\frac{1}{y\left(y+1\right)}.\frac{y}{2}.\frac{y+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)
\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\sqrt[3]{\frac{1}{z\left(z+1\right)}.\frac{z}{2}.\frac{z+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)
\(\Rightarrow\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\)\(+\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\)
\(+\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}.3=\frac{9}{2}\)
\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{2}+\frac{3}{2}\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\left(đpcm\right)\)
Áp dụng BĐT Cauchy ta có:
\(x^2+1\ge2x\) ; \(y^2+1\ge2y\) ; \(z^2+1\ge2z\)
\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
Hoặc có thể biến đổi thành BĐT cần CM tương đương:
\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi: x = y = z = 1
x2 + y2 + z2 + 3 ≥ 2( x + y + z )
<=> x2 + y2 + z2 + 3 ≥ 2x + 2y + 2z
<=> x2 + y2 + z2 + 3 - 2x - 2y - 2z ≥ 0
<=> ( x2 - 2x + 1 ) + ( y2 - 2y + 1 ) + ( z2 - 2z + 1 ) ≥ 0
<=> ( x - 1 )2 + ( y - 1 )2 + ( z - 1 )2 ≥ 0 ( đúng )
Vậy ta có đpcm
Đẳng thức xảy ra <=> x = y = z = 1
Ta có : \(27xyz\le\left(x+y+z\right)^3\)
<=> \(\left(x+y+z\right)^3-27xyz\ge0\)
<=> (x + y)3 + 3(x + y)z(x + y + z) + z3 - 27xyz \(\ge0\)
=> x3 + y3 + 3xy(x + y) + 3(x + y)z(x + y + z) + z3 - 27xyz \(\ge\)0
<=> (x3 + y3 + z3) + 3(x + y)[xy + z(x + y + z)] - 27xyz \(\ge0\)
<=> (x3 + y3 + z3) + 3(x + y)(y + z)(z + x) - 27xyz \(\ge0\)
mà x + y \(\ge2\sqrt{xy}\)
Thật vậy x + y \(\ge2\sqrt{xy}\)
=> (x + y)2 \(\ge\)4xy
<=> x2 - 2xy + y2 \(\ge\) 0
<=> (x - y)2 \(\ge\)0 (đúng \(\forall x;y>0\))
Tương tự ta được y + z \(\ge2\sqrt{yz}\)
z + x \(\ge2\sqrt{xz}\)
Khi đó 3(x + y)(y + z)(z + x) \(\ge3.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=24xyz\)(dấu "=" xảy ra khi x = y = z)
=> (x3 + y3 + z3) + 3(x + y)(y + z)(z + x) - 27xyz \(\ge0\)
<=> (x3 + y3 + z3) + 24xyz - 27xyz \(\ge0\)
<=> x3 + y3 + z3 - 3xyz \(\ge0\)
<=> (x + y + z)[(x - y)2 + (y - z)2 + (z - x)2] \(\ge\)0 (đúng)
=> ĐPCM
khó quá
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta được ;
\(\left|x+y-z\right|+\left|y+z-x\right|\ge\left|x+y-z+y+z-x\right|=2\left|y\right|\)
Tương tự : \(\left|y+z-x\right|+\left|z+x-y\right|\ge2\left|z\right|\)
\(\left|z+x-y\right|+\left|x+y-z\right|\ge2\left|x\right|\)
\(\Rightarrow\left|x+y-z\right|+\left|y+z-x\right|+\left|z+x-y\right|+\left|x+y+z\right|\ge\left|x+y+z\right|+2\left(\left|x\right|+\left|y\right|+\left|z\right|\right)\)
\(\ge2\left(\left|x\right|+\left|y\right|+\left|z\right|\right)\)