Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+\frac{x}{y}+\frac{y}{z}+\frac{x}{z}\right)\left(1+\frac{z}{x}\right)=2+\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+\frac{y}{x}+\frac{x}{z}\)
\(=2+\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)+\left(\frac{x}{z}+\frac{z}{y}+\frac{y}{x}\right)\)
Ta chứng minh bất đẳng thức :
\(\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)+\left(\frac{x}{z}+\frac{z}{y}+\frac{y}{x}\right)\ge\frac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)
Vì x, y, z đóng vai trò như nhau nên ta chứng minh bất đẳng thức phụ:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge\frac{x+y+z}{\sqrt[3]{xyz}}\)
Xét:
\(3\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)=\left(\frac{2x}{y}+\frac{y}{z}\right)+\left(\frac{2y}{z}+\frac{z}{x}\right)+\left(\frac{2z}{x}+\frac{x}{y}\right)\)
Áp dụng BĐT AM-GM ta có:
\(\frac{2x}{y}+\frac{y}{z}=\frac{x}{y}+\frac{x}{y}+\frac{y}{z}\ge3\sqrt[3]{\frac{x.x.y}{y.y.z}}=3\sqrt[3]{\frac{x.x.x}{xyz}}=3\frac{x}{\sqrt[3]{xyz}}\)
Tương tự như thế ta có:
\(3\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\ge3.\frac{x}{\sqrt[3]{xyz}}+3\frac{y}{\sqrt[3]{xyz}}+3\frac{z}{\sqrt[3]{xyz}}\)
\(\Rightarrow\)\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge\frac{x+y+z}{\sqrt[3]{xyz}}\)
Như vậy:
\(\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)+\left(\frac{x}{z}+\frac{z}{y}+\frac{y}{x}\right)\ge\frac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)
=> \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\ge2+\frac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)
Dấu "=" khi x=y=z
Câu hỏi của Incursion_03 - Toán lớp 9 - Học toán với OnlineMath
Sửa đề: CMR: Với mọi số thực x,y,z luôn có:
\(\left|x+y-z\right|+\)\(\left|y+z-x\right|+\)\(\left|x+z-y\right|+\)\(\left|x+y+z\right|\)\(\ge2\left(\left|x\right|+\left|y\right|+\left|z\right|\right)\)
a)Áp dụng BĐT AM-GM ta có:
\(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}\)
\(\ge2\sqrt{\left(x+y\right)\cdot2\sqrt{xy}}=VP\)
Xảy ra khi \(x=y\)
b)\(BDT\Leftrightarrow x+y+z+t\ge4\sqrt[4]{xyzt}\)
Đúng với AM-GM 4 số
Xảy ra khi \(x=y=z=t\)
\(P=\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{2007}{xy+yz+zx}\)
\(P\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{2007}{\frac{1}{3}\left(x+y+z\right)^2}\)
\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{6021}{\left(x+y+z\right)^2}=\frac{6030}{\left(x+y+z\right)^2}\ge\frac{6030}{3^2}=670\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Áp dụng BĐT Côsi dưới dạng engel, ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)
⇒\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right).\frac{9}{x+y+z}\) = 9
Dấu "=" xảy ra ⇔ x = y = z
Xét các biểu thức :
\(x^3+y^3+z^3=x^3+y^3+\left(-x-y\right)^3=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)\left(-3xy\right)=-3xy.\left(-z\right)=3xyz\)
\(x^2+y^2+z^2=x^2+y^2+\left(-x-y\right)^2=2\left(x^2+y^2+xy\right)\)
Do đó VT có giá trị là \(5.\left(3xyz\right).2\left(x^2+y^2+xy\right)=30xyz\left(x^2+y^2+xy\right)\)
Xét VP:
\(x^5+y^5+z^5=\left(x^5+y^5\right)+\left(-x-y\right)^5\)
\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)
\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy.\left[\left(x+y\right)^3-xy\left(x+y\right)\right]\)
\(=-5xy\left(x+y\right)\left(x^2+2xy+y^2-xy\right)\)
\(=5xyz\left(x^2+xy+y^2\right)\)
Do đó VP là \(30xyz\left(x^2+y^2+xy\right)\)
Suy ra điều phải chứng minh.
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
\(\Leftrightarrow x^2+y^2+z^2+3\ge2x+2y+2z\)
\(\Leftrightarrow x^2+y^2+z^2+3-2x-2y-2z\ge0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (luôn đúng)
Vậy \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
Ta có : \(27xyz\le\left(x+y+z\right)^3\)
<=> \(\left(x+y+z\right)^3-27xyz\ge0\)
<=> (x + y)3 + 3(x + y)z(x + y + z) + z3 - 27xyz \(\ge0\)
=> x3 + y3 + 3xy(x + y) + 3(x + y)z(x + y + z) + z3 - 27xyz \(\ge\)0
<=> (x3 + y3 + z3) + 3(x + y)[xy + z(x + y + z)] - 27xyz \(\ge0\)
<=> (x3 + y3 + z3) + 3(x + y)(y + z)(z + x) - 27xyz \(\ge0\)
mà x + y \(\ge2\sqrt{xy}\)
Thật vậy x + y \(\ge2\sqrt{xy}\)
=> (x + y)2 \(\ge\)4xy
<=> x2 - 2xy + y2 \(\ge\) 0
<=> (x - y)2 \(\ge\)0 (đúng \(\forall x;y>0\))
Tương tự ta được y + z \(\ge2\sqrt{yz}\)
z + x \(\ge2\sqrt{xz}\)
Khi đó 3(x + y)(y + z)(z + x) \(\ge3.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=24xyz\)(dấu "=" xảy ra khi x = y = z)
=> (x3 + y3 + z3) + 3(x + y)(y + z)(z + x) - 27xyz \(\ge0\)
<=> (x3 + y3 + z3) + 24xyz - 27xyz \(\ge0\)
<=> x3 + y3 + z3 - 3xyz \(\ge0\)
<=> (x + y + z)[(x - y)2 + (y - z)2 + (z - x)2] \(\ge\)0 (đúng)
=> ĐPCM
a, \(\left(x+y+z\right)^2=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)\(=x^2+2xy+y^2+2zx+2zy+z^2=x^2+y^2+z^2+2xy+2yz+2zx\)(đpcm)
b, \(\left(x+y+z\right)^3=\left(\left(x+y\right)+z\right)^3=\left(x+y\right)^3+z^3+3\left(x+y\right)z\left(x+y+z\right)\)
\(=x^3+y^3+3xy\left(x+y\right)+z^3+3\left(x+y\right)z\left(x+y+z\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(xy+z\left(x+y+z\right)\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(xy+zx+zy+z^2\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(y\left(x+z\right)+z\left(x+z\right)\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
Đẳng thức ban đầu \(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=4x^2+4y^2+4z^2-4xy-4yz-4zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)
\(\Leftrightarrow x=y=z\)
Áp dụng BĐT Cauchy ta có:
\(x^2+1\ge2x\) ; \(y^2+1\ge2y\) ; \(z^2+1\ge2z\)
\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
Hoặc có thể biến đổi thành BĐT cần CM tương đương:
\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi: x = y = z = 1
x2 + y2 + z2 + 3 ≥ 2( x + y + z )
<=> x2 + y2 + z2 + 3 ≥ 2x + 2y + 2z
<=> x2 + y2 + z2 + 3 - 2x - 2y - 2z ≥ 0
<=> ( x2 - 2x + 1 ) + ( y2 - 2y + 1 ) + ( z2 - 2z + 1 ) ≥ 0
<=> ( x - 1 )2 + ( y - 1 )2 + ( z - 1 )2 ≥ 0 ( đúng )
Vậy ta có đpcm
Đẳng thức xảy ra <=> x = y = z = 1