K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2021

đây nhé

22 tháng 7 2021

Ta có a(a + 1) + 1  = a2 + a + 1 = \(a^2+2.\frac{1}{2}a+\frac{1}{4}+\frac{3}{4}=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)(đpcm) 

24 tháng 4 2016

Ta có: a2 +a+1=(a2 +2a1/2+1/4 )+ 3/4 =(a+1/2)2 +3/4 >0

 Tương tự: a2 -a+1=( a-1/2 )2 +3/4 >0

Vậy suy ra điều cần cm

Ta có :a ²+a+1=(a ²+a+1/4)+3/4=(a+1/2) ²+3/4

          a ²-a+1=(a ²-a+1/4)+3/4=(a-1/2) ²+3/4

Vì (a-1/2) ² ≥  0;(a-1/2)²≥  0 với mọi a nên suy ra điều phải chứng minh

22 tháng 7 2021

TH1: a là số tự nhiên ⇒ a ≥ 0 ⇒ a + 1 > 0

⇒ a. (a + 1) > 0 ⇒ a. (a + 1) + 1 > 0

TH2: a là số nguyên âm và a ≤ -2 ⇒ a + 1 < 0

⇒ a. (a + 1) > 0 ⇒ a. (a + 1) + 1 > 0

TH3: a = -1 ⇒a. (a + 1) + 1 = -1.0 + 1 = 1 > 0

Ta có: \(a\left(a+1\right)+1\)

\(=a^2+a+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall a\)

12 tháng 8 2017

a, x^2 + xy + y^2 + 1 

= (x+y/4) ^2 + 3/4.y^2 + 1 >= 1 > 0

21 tháng 7 2017

a, \(x^2+xy+y^2+1=x^2+\dfrac{1}{2}xy+\dfrac{1}{2}xy+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)

\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\)

Với mọi giá trị của \(x;y\in R\) ta có:

\(\left(x^2+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\)

\(\Rightarrow\left(x^2+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\ge1\)

Vậy............

b, \(5x^2+10y^2-6xy-4x-2y+3\)

\(=x^2-6xy+9y^2+4x^2-4x+1+y^2-2y+1+1\)

\(=x^2-3xy-3xy+9y^2+4x^2-2x-2x+1+y^2-y-y+1+1\)

\(=x\left(x-3y\right)-3y\left(x-3y\right)+2x\left(2x-1\right)-\left(2x-1\right)+y\left(y-1\right)-\left(y-1\right)+1\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\)

Với mọi giá trị của \(x;y\in R\) ta có:

\(\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2\ge0\)

\(\Rightarrow\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)

Vậy..............

Chúc bạn học tốt!!!

20 tháng 4 2018

\(\dfrac{a^2+a+1}{a^2-a+1}=\dfrac{a^2+2.a.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}}{a^2-2.a.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}}\)

\(=\dfrac{\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}{\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}>0\) ( luôn đúng)

23 tháng 4 2019

Ta có: \(a^2+a+1=a^2+a+\frac{1}{4}+\frac{3}{4}=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(a^2-a+1=a^2-a+\frac{1}{4}+\frac{3}{4}=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\frac{a^2+a+1}{a^2-a+1}>0\forall a\in R\)

24 tháng 9 2021

\(A=\left(x-1\right)\left(x-3\right)+2=x^2-4x+3+2=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1>0\forall x\)

\(3x^2+1\ge1>0\forall x\)