Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^2+a+1=a^2+a+\frac{1}{4}+\frac{3}{4}=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(a^2-a+1=a^2-a+\frac{1}{4}+\frac{3}{4}=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\frac{a^2+a+1}{a^2-a+1}>0\forall a\in R\)
Vì a>0 nên a2+1>0. Áp dụng BĐT Cô-si:
\(\frac{a}{a^2+1}+\frac{3\left(a^2+1\right)}{2a}\ge2\sqrt{\frac{a}{a^2+1}\times\frac{3\left(a^2+1\right)}{2a}}\)
<=> \(\frac{a}{a^2+1}+\frac{3\left(a^2+1\right)}{2a}\ge2\sqrt{\frac{3}{2}}\)
<=> \(\frac{a}{a^2+1}+\frac{3\left(a^2+1\right)}{2a}\ge\sqrt{6}\)
Đây là GTNN của biểu thức rồi, hình như đề bài sai thì phải
"Chấm" nhẹ hóng cao nhân ạ :)
P/s: mong các bác giải theo cách lớp 8 ạ :) Tặng 5SP / 1 câu nhé ;)
Không mất tính tổng quát giả sử \(a\ge b\ge c>0\Rightarrow\hept{\begin{cases}b+c\le a+c\le a+b\\\frac{a^a}{b+c}\ge\frac{b^a}{c+a}\ge\frac{c^a}{a+b}\end{cases}}\)
Sử dụng bất đẳng thức Chebyshev cho 2 dãy đơn ngược chiều ta có:
\(VT\left(1\right)=\frac{1}{2\left(a+b+c\right)}\left(\frac{a^a}{b+c}+\frac{b^a}{c+a}+\frac{c^a}{a+b}\right)\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\ge\)
\(\frac{1}{2\left(a+b+c\right)}\cdot3\left[\frac{a^a}{b+c}\left(b+c\right)+\frac{b^a}{c+a}\left(c+a\right)+\frac{c^a}{a+b}\left(a+b\right)\right]=\frac{3\left(a^a+b^a+c^a\right)}{2\left(a+b+c\right)}\)\(=\frac{3}{2}\cdot\frac{a^a+b^a+c^a}{a+b+c}\)
=> đpcm
\(\frac{2}{x^2+2y^2+3}\le\frac{1}{xy+x+1}\)
\(\Leftrightarrow x^2+2y^2+3\ge2xy+2y+2\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2\ge0\)
Vì bđt cuối luôn đúng mà các phép biến đổi trên là tương đương nên bđt ban đầu luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\Leftrightarrow x=y=1\)
Ta có : \(\frac{1}{a^2+2b^2+3}=\frac{1}{a^2+b^2+b^2+1+2}\le\frac{1}{2ab+2b+2}\) ( AD BĐT Cô si cho a ; b dương ) ( 1 )
Tương tự : \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2bc+2c+2};\frac{1}{c^2+2a^2+3}\le\frac{1}{2ac+2a+2}\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow P\le\frac{1}{2ab+2b+2}+\frac{1}{2bc+2c+2}+\frac{1}{2ac+2a+2}\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}\right)\left(abc=1\right)\)
\(=\frac{1}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)
\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)
Cộng vế với vế ta được :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)
Vậy ta có điều phải chứng mình
Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *
Khi đó:
\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)
Tương tự:
\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)
\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)
a) Áp dụng bất đẳng thức AM-GM :
\(\left(a^2+b^2\right)\left(a^2+1\right)\ge2\sqrt{a^2b^2}.2\sqrt{a^2}\ge2ab.2a=4a^2b\)
b) Áp dụng bất đẳng thức :\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x;y>0\)
\(\frac{1}{a+3b}+\frac{1}{b+2c+a}\ge\frac{4}{a+3b+b+2c+a}=\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)
Tương tự \(\hept{\begin{cases}\frac{1}{b+3c}+\frac{1}{c+2a+b}\ge\frac{2}{b+2c+a}\\\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{b+2a+c}\end{cases}}\)
Cộng vế với vế ta được : \(VT+VP\ge2VP\Rightarrow VT\ge VP\)(đpcm)
Ta có: a2 +a+1=(a2 +2a1/2+1/4 )+ 3/4 =(a+1/2)2 +3/4 >0
Tương tự: a2 -a+1=( a-1/2 )2 +3/4 >0
Vậy suy ra điều cần cm
Ta có :a ²+a+1=(a ²+a+1/4)+3/4=(a+1/2) ²+3/4
a ²-a+1=(a ²-a+1/4)+3/4=(a-1/2) ²+3/4
Vì (a-1/2) ² ≥ 0;(a-1/2)²≥ 0 với mọi a nên suy ra điều phải chứng minh