K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

Ta có:

n3 + 11n

= n3 - n + 12n

= n.(n2 - 1) + 12n

= n.(n - 1).(n + 1) + 12n

= (n - 1).n.(n + 1) + 12n

Vì (n - 1).n.(n + 1) là tích 3 số tự nhiên liên tiếp => tích này chia hết cho 2 và 3

Mà (2;3)=1 => (n - 1).n.(n + 1) chia hết cho 6; 12n chia hết cho 6

=> n3 + 11n chia hết cho 6 ( đpcm)

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

24 tháng 10 2021

b) Ta có: \(mn\left(m^2-n^2\right)=mn\left(m-n\right)\left(m+n\right)\)(*)

Xét tích (*), ta thấy khi m và n có cùng tinh chẵn lẻ thì m - n và m + n là số chẵn, từ đó (*)\(⋮2\)

Nếu chỉ có một trong hai số m và n là số chẵn, thì hiển nhiên (*) \(⋮2\)

Vậy (*) \(⋮2\)với mọi trường hợp m và n nguyên. (1)

Xét tiếp tích (*), ta thấy khi m và n có cùng số dư (là các cặp 0,0 ; 1,1 ; 2,2) khi chia cho 3 thì \(m-n⋮3\), từ đó (*) \(⋮3\)

Khi một trong hai số m và n chia hết cho 3 (là các cặp 0,1 ; 0,2) thì hiển nhiên (*) \(⋮3\)

Khi hai số m và n có tổng các số dư khi chia cho 3 là 3 (là cặp 1,2) thì \(m+n⋮3\), từ đó (*) \(⋮3\)

Vậy (*) \(⋮3\)với mọi trường hợp m và n nguyên. (2)

Mặt khác \(\left(2,3\right)=1\)(3) 

Từ (1), (2) và (3) \(\Rightarrow\)(*) \(⋮2.3=6\)với mọi m và n nguyên \(\Rightarrow mn\left(m^2-n^2\right)⋮6\)với mọi m và n nguyên.

c) Đặt \(n\left(n+1\right)\left(2n+1\right)=k\left(k\inℤ\right)\)

Xét số k, ta thấy n và n + 1 không cùng tính chẵn lẻ nên trong hai số n và n + 1 luôn có một số là bội của 2

\(\Rightarrow k⋮2\)với mọi n nguyên (1)

Xét tiếp số k lần nữa, ta lại thấy khi n\(⋮3\)thì hiển nhiên \(k⋮3\)

Khi n chia 3 dư 2 thì \(n+1⋮3\),từ đó \(k⋮3\)

Khi n chia 3 dư 1 thì \(2n+1⋮3\), từ đó \(k⋮3\)

Vậy \(k⋮3\)với mọi n nguyên. (2)

Mà \(\left(2,3\right)=1\)(3)

Từ (1), (2) và (3) \(\Rightarrow k⋮2.3=6\)với mọi n nguyên \(\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮6\)với mọi n nguyên

14 tháng 8 2019

\(b,n^2\left(n^4-1\right)\)

\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)

Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp

\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)

\(\Rightarrowđpcm\)

=> 

8 tháng 12 2023

Bài 1:

cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3

Giả sử a và b đồng thời đều không chia hết cho 3

      Vì a không chia hết cho 3 nên  ⇒ a2 : 3 dư 1

      vì b không chia hết cho b nên   ⇒ b2 : 3 dư 1

⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)

Vậy a; b không thể đồng thời không chia hết cho ba

     Giả sử a ⋮ 3; b không chia hết cho 3 

      a ⋮ 3 ⇒  a 2 ⋮ 3 

   Mà  a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết) 

Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra 

Từ những lập luận trên ta có:

   a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)

       

 

 

21 tháng 8 2019

Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)=\left(n+1\right)\left(n^2+2n\right)=\left(n+1\right)n\left(n+2\right)=n\left(n+1\right)\left(n+2\right)\)

\(n\left(n+1\right)\left(n+2\right)⋮3\)( tích 3 số tự nhiên liên tiếp chia hết cho 3)

\(n\left(n+1\right)⋮2\)(ích hai số tự nhiên liên tiếp chia hết cho 2)

Mà (2;3)=1

=> \(n\left(n+1\right)\left(n+2\right)⋮6\)

=>\(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)

Câu b em kiểm tra lại đề bài.