Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)Ta có:
\(\overline{abcd}=100\overline{ab}+\overline{cd}=200\overline{cd}+\overline{dc}\)( Vì \(\overline{ab}=2\overline{cd}\))
\(=201\overline{cd}\)
Mà \(201⋮67\) nên \(201\overline{cd}⋮67\)\(\left(đpcm\right)\)
\(b.\)Ta có:
\(\overline{abab}=\overline{ab00}+\overline{ab}=100\overline{ab}+\overline{ab}=101\overline{ab}⋮101\)
Vậy: \(\overline{abab}⋮101\) \(\left(đpcm\right)\)
TA có: abab=ab.100+ab
=> abab=ab.(100+1)
=> abab=ab.101
NHận thấy vì 101 chia hết cho 101 => ab.101 chia hết cho 101
Mà abab=ab.101 =< abab chia hết cho 101
,a,abba=a.1000+b.100+b.10+a.1
=a.(1000+1)+b.(10+100)
=a.1001+b.110
=a.(11.91)+(11.10)\(⋮\)11
\(\Rightarrow\)abba\(⋮\)11(đpcm)