Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề kiểu gì v ta? Tính 3443 - 100 ra 3343 không chia hết cho 132
S = 3443 - 100
S = 3343 : 132=25 ( dư 43)
vậy không chứng minh được S chia hết cho 132.
342 đồng dư vs 100 (mod 132)
=> 3442 đồng dư vs 100 (mod 132)
=> 3443 đồng dư vs 100*34 đồng dư vs 100 (mod 132)
=> 3443-100 đồng dư vs 100-100 đồng dư vs 0 (mod 132)
Ta có \(9^{34}-27^{22}+81^{16}=9^{34}-\left(3^3\right)^{22}+\left(9^2\right)^{16}\)
\(=9^{34}-3^{66}+9^{32}=9^{34}-9^{33}+9^{32}\)
\(=9^{32}\left(9^2-9+1\right)=9^{32}.73\)
\(=9^{31}.\left(8.73\right)=9^{31}.657⋮657\)
a) Sai đề.
b) \(9^{34}-27^{22}+81^{16}\)
\(=3^{68}-3^{66}+3^{64}\)
\(=3^{64}\left(3^4-3^2+1\right)=3^{64}.73=3^{62}.9.73\)
= \(3^{62}.657⋮657\)
Ta thấy \(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}\)
\(A=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(A=-7.\left[1+\left(-7\right)+49\right]+\left(-7\right)^4.\left[1+\left(-7\right)+49\right]+...+\left(-7\right)^{2005}.\left[1+\left(-7\right)+49\right]\)
\(A=-7.43+\left(-7\right)^4.43+...+\left(-7\right)^{2005}.43\)
\(A=43\left[\left(-7\right)+\left(-7\right)^4+...+\left(-7\right)^{2005}\right]⋮43\)
Vậy A chia hết cho 43.