K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(n\left(n+2\right)\left(49n^2-1\right)\)

\(=n\left(n+2\right)\left(49n^2-49+48\right)\)

\(=n\left(n+2\right)\left(49n^2-49\right)+48n\left(n+2\right)\)

\(=n\cdot\left(n+2\right)\cdot49\cdot\left(n^2-1\right)+48n\left(n+2\right)\)

\(=49\cdot n\cdot\left(n-1\right)\left(n+1\right)\left(n+2\right)+48n\left(n+2\right)\)

\(=49\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)+48n\left(n+2\right)\)

Ta có: n-1;n;n+1;n+2 là bốn số tự nhiên liên tiếp

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)⋮24\)

\(\Leftrightarrow49\cdot\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)⋮24\)(1)

Ta có: \(48⋮24\)(Do 48 là bội của 24)

nên \(48n\left(n+2\right)⋮24\)(2)

Từ (1) và (2) suy ra \(49\cdot\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)+48n\left(n+2\right)⋮24\)

\(\Leftrightarrow n\cdot\left(n+2\right)\cdot\left(49n^2-1\right)⋮24\)(đpcm)

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý

15 tháng 9 2016

sao ban go duoc sao luy thua vay 

15 tháng 9 2016

4mn(m2 - n2) = 4.(m-n)mn(m+n) h này chia hết cho 4 và 6 nên chia hết cho 24

15 tháng 9 2016

Ta có: \(mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]=n\left[m\left(m^2-1\right)-1\left\{n^2-1\right\}\right]\)

\(=m\left(m-1\right)\left(m+1\right)+n\left(n-1\right)\left(n+1\right)⋮6\)

Mà: \(4mn\left(m^2-n^2\right)⋮4\)

Vậy: \(4mn\left(m^2-n^2\right)⋮4.6=24\)

 

 

16 tháng 9 2016

undefined

16 tháng 9 2016

khó nhìn thiệt nhưng chắc đúng

9 tháng 11 2017

Ta có: \(n^4-14n^3+71n^2-154n+120\)

        = \(n^4-7n^3-7n^3+12n^2+49n^2+10n^2-84n-70n+120\)

        = \(\left(n^4-7n^3+12n^2\right)-\left(7n^3-49n^2+84n\right)+\left(10n^2-70n+120\right)\)

        = \(n^2\left(n^2-7n+12\right)-7n\left(n^2-7n+12\right)+10\left(n^2-7n+120\right)\)

        =\(\left(n^2-7n+10\right)\left(n^2-7n+12\right)\)

        =\(\left(n-6\right)\left(n-5\right)\left(n-4\right)\left(n-3\right)\)

Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 nên \(\left(n-6\right)\left(n-5\right)\left(n-4\right)\left(n-3\right)\)chia hết cho 3.

Trong 4 số tự nhiên liên tiếp luôn có 2 số chẵn nên  \(\left(n-6\right)\left(n-5\right)\left(n-4\right)\left(n-3\right)\)chia hết cho 8.

Do \(\left(3,8\right)=1\)nên \(\left(n-6\right)\left(n-5\right)\left(n-4\right)\left(n-3\right)\)chia hết cho 24.

9 tháng 11 2017

Mk mới học lớp 6 nè

22 tháng 9 2016

\(A=n^4+6n^3+11n^2+6n\)

    \(=n\left(n^3+6n^2+11n+6\right)\)

    \(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)

    \(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)

    \(=n\left(n+1\right)\left(n^2+5n+6\right)\)

    \(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Do đây là tích 4 số nguyên liên tiếp nên nó vừa chia hết cho \(2,3,4\Rightarrow A\) chia hết cho 24

    

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

19 tháng 10 2021

hỏi từ lâu hổng ai trả lời hihi