Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Ta có :}\)
\(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}\)
\(=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)
\(=\left(x^{4n}-x^{2n}+1\right)\left(x^{4n}+x^{2n}+1\right)\)
\(\text{Ta lại có :}\)
\(x^{4n}+x^{2n}+1=x^{4n}+2x^{2n}+1-x^{2n}\)
\(=\left(x^{2n}+1\right)^2-\left(x^n\right)^2=\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)
\(\Rightarrow x^{8n}+x^{4n}+1=\left(x^{4n}-x^{2n}+1\right)\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)
\(\Rightarrow x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\)
Vì n và n + 1 là 2 STN liên tiếp nên đa thức có dạng:
\(\left(x^{2k}-1\right)\left(x^{2k+1}-1\right)\)
\(=\left(x^2-1\right)P\left(x\right)\left(x-1\right)Q\left(x\right)\)
\(=\left(x-1\right)\left(x+1\right)P\left(x\right)\left(x-1\right)Q\left(x\right)\)
\(=\left(x+1\right)\left(x-1\right)^2P\left(x\right)Q\left(x\right)⋮\left(x+1\right)\left(x-1\right)^2\)
Ta có: \(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)
\(=\left(x^{4n}+x^{2n}+1\right)\left(x^{4n}-x^{2n}+1\right)=\left(x^{4n}+2x^{2n}+1-x^{2n}\right)\left(x^{4n}-x^{2n}+1\right)=\left[\left(x^{2n}+1\right)-\left(x^n\right)^2\right]\left(x^{4n}-x^{2n}+1\right)=\left(x^{2n}+1-x^n\right)\left(x^{2n}+1+x^n\right)\left(x^{4n}-x^{2n}+1\right)\)=> \(x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\left(\forall x\right)\)
Bài 272 , 273 Sách nâng cao và phát triển toán 8 tập 1 trang 71, bài tương tự đấy
x6m+4+x6n+2+1=x6m+4-x4+x6n+2-x2+x4+x2+1
=x4.(x6m-1)+x2.(x6n-1)+(x4+x2+1)
Vì x6m-1 chia hết cho x6-1 , x6n-1 chia hết cho x6-1 và
x6-1=(x3+1)(x3-1) chia hết cho x2-x+1
x4+x2+1=(x2+1)2-x2 chia hết cho x2-x+1
=> đpcm
Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath