Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có 9^k + 5^k +7^k lun lẻ còn 10^k+8^k+6^k lun chẵn mà chẵn trừ lẽ ra lẽ nên k chia hết cho 2
b) 2001^n + 2003^n lun chẵn , 2002^n lun chẵn nên cộng lại chia hết cho 2
c) tạm thời chưa ra
\(\text{Giải:}\)
\(\text{Ta có: 99.10^k-10^k+2=99.10^k -10^k . 100}\)
\(\text{A=-(10^k) mà: B=10^k nên: B lớn hơn A vậy: B lớn hơn A}\)
Ta có : A = 99 . 10k - 10k+2 = 99 . 10k - 10k . 102
= 10k . ( 99 - 100 ) = -1 . 10k
= -10k Vậy A < 0
Mà B = 10k ( k > 0 )
B > 0
Nên A < B
K = (2009 + 20092 + 20093 + 20094 + .... + 200910)
K = [(2009 + 20092) + (20093 + 20094) + ... + (20099 + 200910)]
K = [4038090 + 20092(2009 + 20092) + ... + 20098(2009 + 20092)]
K = [4038090 + 20092.4038090 ... + 20098. 4038090] ⋮ 2010
(4038090 ⋮ 2010)
=> K ⋮ 2010 (đpcm)
\(\frac{a}{k}=\frac{x}{a}\Rightarrow a^2=k.x\)
\(\frac{b}{k}=\frac{y}{b}\Rightarrow b^2=k.y\)
\(=\frac{a^2}{b^2}=\frac{k.x}{k.y}=\frac{x}{y}\text{ Vậy }\frac{a^2}{b^2}=\frac{x}{y}\)
\(\frac{a}{k}=\frac{x}{a}\Rightarrow a^2=k.x\)
\(\frac{b}{k}=\frac{y}{b}\Rightarrow b^2=k.y\)
Thay vào vế trái ta có :
\(\frac{a^2}{b^2}=\frac{kx}{ky}=\frac{x}{y}\)
Vậy VT = VP
3n + 3 + 3n + 1 + 2n + 3 + 2n + 2
= 3n.33 + 3n.3 + 2n.23 + 2n.22
= 3n.(27 + 3) + 2n.(8 + 4)
= 3n.30 + 2n.12
= 3n.5.6 + 2n.2.6
= 6.(3n.5 + 2n.2) \(⋮\) 6
a)
\(5^5-5^4+5^3=5^3\cdot\left(5^2-5+1\right)=5^3\cdot21⋮7\left(đpcm\right)\)
@_@ dài quá
b) \(7^6+7^5-7^4=7^4\cdot\left(7^2+7-1\right)=7^4\cdot55⋮11\left(đpcm\right)\)
còn lại tương tự thôi bạn
@_@ ^^