Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
=> \(\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)}\)
Nhân cả hai vế với \(\frac{1}{b-c}\)
=> \(\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Tương tự: \(\frac{b}{\left(c-a\right)^2}=\frac{-bc+c^2-a^2+ba}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(\frac{c}{\left(a-b\right)^2}=\frac{-ca+a^2-b^2+cb}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Cộng vế với vế ta có:
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}\)
\(=\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ba-ca+a^2-b^2+cb}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
Vậy ta có điều phải chứng minh.
Ba số x,y,z tỉ lệ với ba số a,b,c
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}\)(1)
Lại có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{xa}{a^2}+\frac{yb}{b^2}+\frac{zc}{c^2}=\frac{xa+yb+zc}{a^2+b^2+c^2}=\frac{9\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=9\) (2)
Từ (1) và (2) ta có : \(\frac{x+y+z}{a+b+c}=9\)
\(\Rightarrow\left(x+y+z\right)=9\left(a+b+c\right)\) (đpcm)
Các bạn ơi, đính chính lại nhé! Chỉ cần giải bài 1, 2a,2d và bài 3 là được rồi nhé, mình cảm ơn
1. Xét 32^9 và 18^13
ta có 32^9=(2^5)^9=2^45
18^13>16^13=(2^4)^13=2^52
vì 18^13>2^52>2^45 nên 18^13>32^9
2.
a, ta có A=10\(^{2008}\)+125=100...0+125(CÓ 2008 SỐ 0)=100..0125(CÓ 2005 CSO 0)
Vì 45=5.9 nên cần chứng minh A \(⋮5,⋮9\)
mà A có tcung là 5 nên A \(⋮\)5
A có tổng các cso là 9 nên A\(⋮\)9
vậy A \(⋮\)45
d, bn xem có sai đề ko nhé
3, A=(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)=(y+x+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)=1/(x+y+z)( AD tchat của dãy tỉ số = nhau)
x+y+z=1/2 hoặc -1/2
còn lai bn tự tính nhé
Đăng từng bài thoy nha pn!!!
Bài 1:
Có : 2009 = 2008 + 1 = x + 1
Thay 2009 = x + 1 vào biểu thức trên,ta có :
x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010
= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)
= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1
= -2
\(\frac{a}{k}=\frac{x}{a}\Rightarrow a^2=k.x\)
\(\frac{b}{k}=\frac{y}{b}\Rightarrow b^2=k.y\)
\(=\frac{a^2}{b^2}=\frac{k.x}{k.y}=\frac{x}{y}\text{ Vậy }\frac{a^2}{b^2}=\frac{x}{y}\)
\(\frac{a}{k}=\frac{x}{a}\Rightarrow a^2=k.x\)
\(\frac{b}{k}=\frac{y}{b}\Rightarrow b^2=k.y\)
Thay vào vế trái ta có :
\(\frac{a^2}{b^2}=\frac{kx}{ky}=\frac{x}{y}\)
Vậy VT = VP