K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

Ta có : \(2013^{2015}+1^{2015}⋮\left(2013+1\right)=2014\)

\(2015^{2013}-1^{2013}⋮\left(2015-1\right)=2014\)

Do đó : \(\left(2013^{2015}+1^{2015}\right)+\left(2015^{2013}-1^{2013}\right)⋮2014\)

\(\Rightarrow2013^{2015}+1+2015^{2013}-1⋮2014\)

\(\Rightarrow2013^{2015}+2015^{2013}+\left(1-1\right)⋮2014\)

\(\Rightarrow2013^{2015}+2015^{2013}⋮2014\)

Vậy bài toán đã được chứng minh

17 tháng 8 2019

cảm ơn bạn và mik cx k cho bạn r

25 tháng 3 2017

a^2014+b^2014+c^2014=a^2015+b^2015+c^2015=1

<=> (a^2014-a^2015)+(b^2014-b^2015)+(c^2014-c^2015)=0

suy ra \(\hept{\begin{cases}a^{2014}=a^{2015}\\b^{2014}=b^{2015}\\c^{2014}=c^{2015}\end{cases}}\)

<=> \(\hept{\begin{cases}\orbr{\begin{cases}a=1\\a=0\end{cases}}\\\orbr{\begin{cases}b=1\\b=0\end{cases}}\\\orbr{\begin{cases}c=1\\c=0\end{cases}}\end{cases}}\)

<=> a=1 hoặc a=0; b=1 or b=0; c=1;c=0 mà a^2014+b^2014+c^2014=1

suy ra a,b,c có 2 trong 3 số bằng 0 và 1 số bằng 1

P=1

22 tháng 12 2017

đặt B = 42015 + 42014 + 42013  + ... + 42

4B = 42016 + 42015 + 42014 + ... + 43

4B - B = ( 42016 + 42015 + 42014 + ... + 43 ) - ( 42015 + 42014 + 42013  + ... + 42 )

3B = 42016 - 42

\(\Rightarrow\)B = \(\frac{4^{2016}-4^2}{3}\)hay B = \(\frac{4^{2016}-16}{3}\)

\(\Rightarrow\)A = 75 . ( \(\frac{4^{2016}-16}{3}\)+ 5 ) + 25

A = 75 . ( \(\frac{4^{2016}-16}{3}\)\(\frac{15}{3}\)) + 25

A = 75 . ( \(\frac{4^{2016}-1}{3}\)) + 25

A = 25 . ( 3 . \(\frac{4^{2016}-1}{3}\)) + 25

A = 25 . ( 42016 - 1 ) + 25

A = 25 . ( 42016 - 1 + 1 )

A = 25 . 42016 \(⋮\)42016

b: \(=\dfrac{2014\cdot2015^2+2014\cdot2016-2016\cdot2015^2+2016\cdot2014}{2014\cdot2013^2-2014\cdot2012-2012\cdot2013^2-2012\cdot2014}\)

\(=\dfrac{2015^2\cdot\left(-2\right)+2\cdot\left(2015^2-1\right)}{2013^2\cdot\left(-2\right)-2\cdot\left(2013^2-1\right)}\)

\(=\dfrac{\left(-2\right)\cdot\left(2015^2-2015^2+1\right)}{\left(-2\right)\cdot\left(2013^2+2013^2-1\right)}=\dfrac{1}{2\cdot2013^2}\)

28 tháng 12 2017

Ta có:

\(\left(b_1+b_2+...+b_{2014}\right)^3=\left(b_1^3+b_2^3+...+b_{2014}^3\right)+3B⋮3\)

\(\Rightarrow A⋮3\)

19 tháng 3 2019

@Nguyễn Việt Lâm