K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(=\dfrac{2014\cdot2015^2+2014\cdot2016-2016\cdot2015^2+2016\cdot2014}{2014\cdot2013^2-2014\cdot2012-2012\cdot2013^2-2012\cdot2014}\)

\(=\dfrac{2015^2\cdot\left(-2\right)+2\cdot\left(2015^2-1\right)}{2013^2\cdot\left(-2\right)-2\cdot\left(2013^2-1\right)}\)

\(=\dfrac{\left(-2\right)\cdot\left(2015^2-2015^2+1\right)}{\left(-2\right)\cdot\left(2013^2+2013^2-1\right)}=\dfrac{1}{2\cdot2013^2}\)

26 tháng 1 2016

[(2013/2+1)+(2012/3+1)+....(1/2014+1)+2015/2015]/(1/2+1/3+...+1/2015)=== [2015.(1/2+1/3+...1/2015)]/(1/2+1/3...+1/2015)=========>=2015

2 tháng 11 2018

Em học lớp 7 nè !!!

2 tháng 11 2018

trên mạng có mà 

1 tháng 12 2016

Xét dạng tổng quát: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}.\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\sqrt{n}.\frac{1}{\sqrt{n}}+\sqrt{n}.\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)< \left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(1+\frac{\sqrt{n+1}}{\sqrt{n+1}}\right)=2.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Thay vào đề bài ta có:

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2013\sqrt{2012}}\)

\(< 2.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

\(< 2.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2013}}\right)\)

\(< 2.\left(1-\frac{1}{\sqrt{2013}}\right)< 2\left(đpcm\right)\)

 

 

 

1 tháng 12 2016

Liên hợp

2 tháng 1 2016

Xét Tử số của A ta có:

\(2014+\frac{2013}{2}+\frac{2012}{3}+....+\frac{2}{2013}=1+\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+....+\left(\frac{1}{2014}+1\right)\)\(TS=\frac{2015}{2}+\frac{2015}{3}+....+\frac{2015}{2014}+\frac{2015}{2015}\)

\(TS=2015.\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}\right)\)

\(A=\frac{2015.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)}{\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}\right)}=2015\)

2 tháng 1 2016

toán lớp 8 dễ quá vậy

A=2015

hình như thế