\(\ge\)0 và b \(\ge\)0 , ta có 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

Ta có \(\sqrt{ab}=\sqrt{a}.\sqrt{b}\)

 \(\Leftrightarrow\left(\sqrt{ab}\right)^2=\left(\sqrt{a}.\sqrt{b}\right)^2\)

\(\Leftrightarrow ab=\sqrt{a}^2.\sqrt{b}^2\)

\(\Leftrightarrow ab=a.b\)(luôn đúng)

Vậy ........

16 tháng 8 2016

Chứng minh bằng biến đổi tương đương :

\(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\) . Vì hai vế không âm nên bình phương cả hai vế : 

\(\frac{a+b}{2}\ge\frac{a+b+2\sqrt{ab}}{4}\) \(\Leftrightarrow2\left(a+b\right)\ge a+b+2\sqrt{ab}\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)

Vì bđt cuối luôn đúng nên bđt ban đầu dc chứng minh. 

Dấu "=" xảy ra khi a = b (a,b không âm)

10 tháng 6 2018

\(\text{a) }\dfrac{a+b}{2}\ge\sqrt{ab}\left(1\right)\\ \Leftrightarrow\dfrac{a+b}{2}-\sqrt{ab}\ge0\\ \Leftrightarrow\dfrac{a+b}{2}-\dfrac{2\sqrt{ab}}{2}\ge0\\ \Leftrightarrow\dfrac{a+b-2\sqrt{ab}}{2}\ge0\\ \Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\left(2\right)\)

BDT (2) luôn đúng \(\forall x\) nên BDT (1) luôn đúng \(\forall x\)

Dấu "=" xảy ra khi:

\(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}=0\\ \Leftrightarrow\sqrt{a}-\sqrt{b}=0\\ \Leftrightarrow\sqrt{a}=\sqrt{b}\\ \Leftrightarrow a=b\)

Vậy \(\dfrac{a+b}{2}\ge\sqrt{ab}\) đẳng thức xảy ra khi: \(a=b\)

b) Áp dụng BDT Cô-si có:

\(\dfrac{a+b}{2}\ge\sqrt{ab}\\ \dfrac{a+c}{2}\ge\sqrt{ac}\\ \dfrac{b+c}{2}\ge\sqrt{bc}\\ \Rightarrow\dfrac{a+b}{2}+\dfrac{a+c}{2}+\dfrac{b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\\ \Rightarrow\dfrac{a+b+a+c+b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\\ \Rightarrow a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)

Vậy \(a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) đẳng thức xảy ra khi : \(a=b=c\)

1 tháng 7 2019

b) \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(\Leftrightarrow2\left(a+b+c\right)\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\)

\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)

Vì BĐT cuối luôn đúng mà các phép biến đổi trên là tương đương nên BĐT ban đầu luôn đúng

Dấu "=" \(\Leftrightarrow a=b=c\)

c) \(a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)

\(\Leftrightarrow\left(a-\sqrt{a}+\frac{1}{4}\right)+\left(b-\sqrt{b}+\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\)

Vì bđt cuối luôn đúng mà các phép biến đôi trên là tương đương nên bđt ban đầu luôn đúng

Dấu "=" \(\Leftrightarrow a=b=\frac{1}{4}\)

18 tháng 7 2020

Với DK:a\(\ge\)b,b\(\ge\)0,a\(\ne\)b

\(\frac{a+b+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a-b}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)

\(=\left(\sqrt{a}+\sqrt{b}\right)-\left(\sqrt{a}+\sqrt{b}\right)=0\)

NV
28 tháng 9 2019

Biến đổi tương đương:

\(2a+2b+2c\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\)

\(\Leftrightarrow a-2\sqrt{ab}+b+b-2\sqrt{bc}+c+c-2\sqrt{ca}+a\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b=c\)

14 tháng 8 2019

\(\sqrt{a-b}\ge\sqrt{a}-\sqrt{b}\)

\(\Leftrightarrow a-b\ge\left(\sqrt{a}-\sqrt{b}\right)^2\)

\(\Leftrightarrow a-b\ge a-2\sqrt{ab}+b\)

\(\Leftrightarrow a-b-a+2\sqrt{ab}-b\ge0\)

\(\Leftrightarrow-2b+2\sqrt{ab}\ge0\)

\(\Leftrightarrow2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\ge0\)(*)

\(a\ge b\Leftrightarrow\sqrt{a}\ge\sqrt{b}\Leftrightarrow\sqrt{a}-\sqrt{b}\ge0\)

Do đó (*) luôn đúng

Ta có đpcm.

3 tháng 7 2018

\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)

\(\Leftrightarrow a+2\sqrt{ab}+b\ge a+b\)

\(\Leftrightarrow2\sqrt{ab}\ge0\) (Luôn đúng vì a ≥0; b≥0)

Dấu ''='' xảy ra khi a=b=0

18 tháng 8 2017

1) \(\left(a-b\right)^2\ge0\)

\(a^2-2ab+b^2\ge0\)

\(a^2+b^2+2ab\ge4ab\)

\(\left(a+b\right)^2\ge4ab\)

\(\dfrac{\left(a+b\right)^2}{4}\ge ab\)

\(\dfrac{a+b}{2}\ge\sqrt{ab}\)

Dấu ''='' xảy ra khi a=b

18 tháng 8 2017

2) \(\left(\sqrt{2a}-\sqrt{2b}\right)^2\ge0\)

\(2a-4\sqrt{ab}+2b\ge0\)

\(4a+4b\ge2a+2b+4\sqrt{ab}\)

\(\dfrac{a+b}{2}\ge\dfrac{a+b+2\sqrt{ab}}{4}\)

\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)

Dấu ''='' xảy ra khi a=b

11 tháng 10 2018

Ta có \(c\ge\sqrt{ab}\Leftrightarrow c^2\ge ab\Leftrightarrow c^2-ab\ge0\Leftrightarrow c\left(c^2-ab\right)\ge0\Leftrightarrow c^3-abc\ge0\Leftrightarrow\left(c^3-abc\right)\left(a-b\right)\ge0\Leftrightarrow ac^3-a^2bc-bc^3+ab^2c\ge0\Leftrightarrow ab^2c+ac^3\ge a^2bc+bc^3\Leftrightarrow ac\left(b^2+c^2\right)\ge bc\left(a^2+c^2\right)\Leftrightarrow\dfrac{ac}{a^2+c^2}\ge\dfrac{bc}{b^2+c^2}\Leftrightarrow\dfrac{2ac}{a^2+c^2}\ge\dfrac{2bc}{b^2+c^2}\Leftrightarrow1+\dfrac{2ac}{a^2+c^2}\ge1+\dfrac{2bc}{b^2+c^2}\Leftrightarrow\dfrac{a^2+2ac+c^2}{a^2+c^2}\ge\dfrac{b^2+2bc+c^2}{b^2+c^2}\Leftrightarrow\dfrac{\left(a+c\right)^2}{a^2+c^2}\ge\dfrac{\left(b+c\right)^2}{b^2+c^2}\Leftrightarrow\dfrac{a+c}{\sqrt{a^2+c^2}}\ge\dfrac{b+c}{\sqrt{b^2+c^2}}\left(đpcm\right)\)

11 tháng 10 2018

Cần chứng minh

(a + c)²(b² + c²) ≥ (b + c)²(a² + c²)

<=> 2c(a - b)(c² - ab) ≥ 0

Cái này đúng.