Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Biến đổi tương đương:
\(\sqrt{\frac{a+b}{2}}\geq \frac{\sqrt{a}+\sqrt{b}}{2}\)
\(\Leftrightarrow \frac{a+b}{2}\geq \frac{(\sqrt{a}+\sqrt{b})^2}{4}=\frac{a+b+2\sqrt{ab}}{4}\)
\(\Leftrightarrow \frac{a+b}{2}-\frac{a+b+2\sqrt{ab}}{4}\geq 0\)
\(\Leftrightarrow \frac{a+b-2\sqrt{ab}}{4}\geq 0\)
\(\Leftrightarrow \frac{(\sqrt{a}-\sqrt{b})^2}{4}\geq 0\) (luôn đúng)
Do đó ta có đpcm
Dấu "=" xảy ra khi $a=b$
a)Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le6\)
\(\Rightarrow VT^2\le6\Rightarrow VT\le\sqrt{6}=VP\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+\sqrt{b+\sqrt{2c}}}+\sqrt{b+\sqrt{c+\sqrt{2a}}}+\sqrt{c+\sqrt{a+\sqrt{2b}}}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+Σ\sqrt{b+\sqrt{2c}}\right)\)
\(=3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)
Đặt \(A^2=\left(\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)
\(=3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)
Đặt tiếp: \(B^2=\left(\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)^2\)
\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le36\Rightarrow B\le6\)
\(\Rightarrow A^2\le3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\le3\cdot12=36\Rightarrow A\le6\)
\(\Rightarrow VT^2\le3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)
\(\le3\left(6+6\right)=3\cdot12=36\Rightarrow VT\le6=VP\)
Xảy ra khi \(a=b=c=2\)
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow a+b-2\sqrt{ab}\ge0\)
\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (đúng)
Dấu "=" xảy ra khi: \(a=b\)
đúng với mọi a,b chứ nhỉ
nếu a, b <0 VT>=0 VP<0 => đúng
Bp
\(\Leftrightarrow2.\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+2b^2-\left(a^2+2ab+b^2\right)\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) hiển nhiên đúng=> dpcm
1) \(\left(a-b\right)^2\ge0\)
\(a^2-2ab+b^2\ge0\)
\(a^2+b^2+2ab\ge4ab\)
\(\left(a+b\right)^2\ge4ab\)
\(\dfrac{\left(a+b\right)^2}{4}\ge ab\)
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
Dấu ''='' xảy ra khi a=b
2) \(\left(\sqrt{2a}-\sqrt{2b}\right)^2\ge0\)
\(2a-4\sqrt{ab}+2b\ge0\)
\(4a+4b\ge2a+2b+4\sqrt{ab}\)
\(\dfrac{a+b}{2}\ge\dfrac{a+b+2\sqrt{ab}}{4}\)
\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
Dấu ''='' xảy ra khi a=b
\(\text{a) }\dfrac{a+b}{2}\ge\sqrt{ab}\left(1\right)\\ \Leftrightarrow\dfrac{a+b}{2}-\sqrt{ab}\ge0\\ \Leftrightarrow\dfrac{a+b}{2}-\dfrac{2\sqrt{ab}}{2}\ge0\\ \Leftrightarrow\dfrac{a+b-2\sqrt{ab}}{2}\ge0\\ \Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\left(2\right)\)
BDT (2) luôn đúng \(\forall x\) nên BDT (1) luôn đúng \(\forall x\)
Dấu "=" xảy ra khi:
\(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}=0\\ \Leftrightarrow\sqrt{a}-\sqrt{b}=0\\ \Leftrightarrow\sqrt{a}=\sqrt{b}\\ \Leftrightarrow a=b\)
Vậy \(\dfrac{a+b}{2}\ge\sqrt{ab}\) đẳng thức xảy ra khi: \(a=b\)
b) Áp dụng BDT Cô-si có:
\(\dfrac{a+b}{2}\ge\sqrt{ab}\\ \dfrac{a+c}{2}\ge\sqrt{ac}\\ \dfrac{b+c}{2}\ge\sqrt{bc}\\ \Rightarrow\dfrac{a+b}{2}+\dfrac{a+c}{2}+\dfrac{b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\\ \Rightarrow\dfrac{a+b+a+c+b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\\ \Rightarrow a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)
Vậy \(a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) đẳng thức xảy ra khi : \(a=b=c\)
b) \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow2\left(a+b+c\right)\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\)
\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)
Vì BĐT cuối luôn đúng mà các phép biến đổi trên là tương đương nên BĐT ban đầu luôn đúng
Dấu "=" \(\Leftrightarrow a=b=c\)
c) \(a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow\left(a-\sqrt{a}+\frac{1}{4}\right)+\left(b-\sqrt{b}+\frac{1}{4}\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\)
Vì bđt cuối luôn đúng mà các phép biến đôi trên là tương đương nên bđt ban đầu luôn đúng
Dấu "=" \(\Leftrightarrow a=b=\frac{1}{4}\)
Áp dụng BĐT Bunhiacopxki, ta có :
\(\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\)
\(\Rightarrow\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le6\left(a+b+c\right)\)
\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
\(\sqrt{a-b}\ge\sqrt{a}-\sqrt{b}\)
\(\Leftrightarrow a-b\ge\left(\sqrt{a}-\sqrt{b}\right)^2\)
\(\Leftrightarrow a-b\ge a-2\sqrt{ab}+b\)
\(\Leftrightarrow a-b-a+2\sqrt{ab}-b\ge0\)
\(\Leftrightarrow-2b+2\sqrt{ab}\ge0\)
\(\Leftrightarrow2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\ge0\)(*)
Vì \(a\ge b\Leftrightarrow\sqrt{a}\ge\sqrt{b}\Leftrightarrow\sqrt{a}-\sqrt{b}\ge0\)
Do đó (*) luôn đúng
Ta có đpcm.