Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)^2=x^2+2\cdot x\cdot1+1^2=x^2+2x+1=VP\left(đpcm\right)\)
\(P\left(x\right)=x^2+2x+4\)
\(\Delta=b^2-4ac=2^2-4\cdot1\cdot4=4-16=-12\)
\(\Delta< 0\)=> Đa thức vô nghiệm ( đpcm )
\(\left(x+1\right)^2=\left(x+1\right)\left(x+1\right)=x^2+x+x+1=x^2+2x+1\)
=> \(x^2+2x+1=x^2+2x+1\left(\text{đ}pcm\right)\)
Ta có : \(P\left(x\right)=x^2+2x+4=0\)
\(\hept{\begin{cases}x^2\ge0\\2x\ge0\\4>0\end{cases}\Rightarrow vonghiem}\)
Giả sử đa thức P(x) tồn tại một nghiệm n nào đó thỏa mãn ( n là số thực)
Khi đó: P(x) = x2 -2x + 2=0
x.x- x-x +2=0
x(x-1) - (x-1) +1 = 0
(x-1)(x-1) = -1
=> (x-1)2 = -1 mà (x-1)2 luôn \(\ge\) 0 với mọi x (vô lí)
Vậy điều giả sử là sai, đa thức P(x) vô nghiệm
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
\(a.x^2-x+1=0\)
\(x^2-x+1=0\)
\(x+1=0\)
\(x=-1\)
Vì \(x^2-x+1\ge0\)
=>Đa thức f(x) \(x^2-x+1\) không có nghiệm
\(b.x^2-2x+3\)
\(\left(x^2-2x+1\right)+2\)
\(\left(x-1\right)^2+2\)
\(\left(x-1\right)^2+2\ge0+2=2>0\)
Vậy g(x) vô nghiệm
Không chắc
x2 - x + 1 = 0 suy ra x + 1 =0 .Hay đấy!
a) \(f\left(x\right)=x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
Vậy đa thức vô nghiệm
b) \(g\left(x\right)=x^2-2x+3=\left(x^2-2x+1\right)+2=\left(x-1\right)^2+2\ge2>0\forall x\)
Vậy đa thức vô nghiệm (đpcm)
Sai roi lỏi giai la
=> x^2 +x+x + 2+1
=> ( x+1)^2 +2 > 0
vay ko co nghiem
*** bài này tớ làm hơi tắt, cậu cứ phân tích ra là dacdac
x^2+2x+3
=x^2+x+x+1+2
=(x^2+x)+(x+1)+2
=x.(x+1)+(x+1)+2
=(x+1).(x+1)+2
=(x+1)^2+2
->(x+1)^2+2>0
-> đa thức vô nghiệm