Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
c) Thay \(x=1\) vào f(x) ta có :
\(f\left(x\right)=1^2-2\cdot1-5\cdot1^2+6\)
\(=1-2-5+6\\ =0\)
Vậy x=1 là nghiệm của đa thức f(x)
d)
\(h\left(x\right)=0\\ \Leftrightarrow2x+1=0\\ \Leftrightarrow2x=-1\\ \Leftrightarrow x=-\dfrac{1}{2}\)
\(p\left(x\right)=0\\ \Leftrightarrow x^2-x=0\\ \Leftrightarrow x\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
a,f(x)-g(x)+h(x)=2x-`1
b,đặt S(x)=f(x)-g(x)+h(x)
S(x)=0<=>2x+1=0=>x=\(\dfrac{-1}{2}\)
1/ Ta có H (x) có một nghiệm bằng 2
=> H (2) = 0
=> \(4a-2+1=0\)
=> \(4a-\left(2-1\right)=0\)
=> \(4a-1=0\)
=> \(4a=1\)
=> \(a=\frac{1}{4}\)
Vậy khi \(a=\frac{1}{4}\)thì H (x) có một nghiệm bằng 2.
2/
Ta có \(x^4\ge0\)với mọi giá trị của x
=> \(x^4+101>0\)với mọi giá trị của x
=> f (x) không có nghiệm (đpcm)
3/
Ta có \(g\left(1\right)=-2-7.1+8=-2-7+8=-9+8=-1\ne0\)
=> 1 không phải là nghiệm của đa thức g (x)
và \(g\left(3\right)=-2-7.3+8=-2-21+8=-23+8=-15\ne0\)
=> 3 không phải là nghiệm của đa thức g (x)
2. Chứng minh f(x)=x4 + 101 không có nghiệm
Ta có:x4+101=0
=>x4=-101
=>phương trình vô nghiệm vì x4\(\ge\)0 mà -101<0
\(a.x^2-x+1=0\)
\(x^2-x+1=0\)
\(x+1=0\)
\(x=-1\)
Vì \(x^2-x+1\ge0\)
=>Đa thức f(x) \(x^2-x+1\) không có nghiệm
\(b.x^2-2x+3\)
\(\left(x^2-2x+1\right)+2\)
\(\left(x-1\right)^2+2\)
\(\left(x-1\right)^2+2\ge0+2=2>0\)
Vậy g(x) vô nghiệm
Không chắc
x2 - x + 1 = 0 suy ra x + 1 =0 .Hay đấy!
a) \(f\left(x\right)=x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
Vậy đa thức vô nghiệm
b) \(g\left(x\right)=x^2-2x+3=\left(x^2-2x+1\right)+2=\left(x-1\right)^2+2\ge2>0\forall x\)
Vậy đa thức vô nghiệm (đpcm)