Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(f\left(x\right)=x^2-2x-5x^4+6\)
\(=-5x^4+x^2-2x+6\)
\(g\left(x\right)=x^3-5x^4+3x^2-3\)
\(=-5x^4+x^3+3x^2-3\)
b) \(f\left(x\right)+g\left(x\right)=-5x^4+x^2-2x+6-5x^4+x^3+3x^2-3\)
\(=-10x^4+4x^2+x^3-2x+3\)
\(f\left(x\right)-g\left(x\right)=-5x^4+x^2-2x+6+5x^4-x^3-3x^2+3\)
\(=-2x^2-x^3-2x+9\)
c) Thay x = 1 vào f(x) ta có:
\(f\left(1\right)=1-2-5+6=0\)
Vậy x = 1 là nghiệm của f(x)
d) \(h\left(x\right)+f\left(x\right)-g\left(x\right)=-2x^2-x+9\)
\(\Rightarrow h\left(x\right)=-2x^2-x+9+g\left(x\right)-f\left(x\right)\)
\(\Rightarrow h\left(x\right)=-2x^2-x+9+2x^2+x^3+2x-9\)
\(\Rightarrow h\left(x\right)=x^3+x\)
e) Ta có: \(x^3+x=0\)
\(\Rightarrow x^2\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy x = 0, x = -1 là nghiệm của H(x)
M+N=(2xy2-3x+12)+(-xy2-3)
=2xy2-3x+12+(-xy2)-3
=(2xy2-xy2)+(-3x)+(12-3)
=1xy2-3x+9
bài 2:
a)f(x)=-5x4+x2-2x+6
g(x)=-5x4+x3+3x2-3
b)f(x)+g(x)=(-54+x2-2x+6)+(-5x4+x3+3x2-3)
=-5x4+x2-2x+6+(-5x4)+x3+3x2-3
=(-5x4-5x4)+x3+(x2+3x2)+(-2x)+(6-3)
=-10x4+x3+4x2-2x+2
f(x)-g(x)=(-5x4+x2-2x+6)-(-5x4+x3+3x2-3)
=-5x4+x2-2x+6-(+5x4)-x3-3x2+3
=(-5x4+5x4)+(-x3)+(x2-3x2)+(-2x)+(6+3)
=-x3-2x2-2x+9
Bài 1 :
\(M+N\)
\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)
\(=2xy^2-3x+12-xy^2-3\)
\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)
\(=xy^2-3x+9\)
\(h\left(x\right)+f\left(x\right)-g\left(x\right)=-2x^2-x+9\)
\(h\left(x\right)+\left(-5x^4+x^2-2x+6\right)-\left(-5x^4+x^3+3x^2-3\right)=-2x^2-x+9\)
\(h\left(x\right)-5x^4+x^2-2x+6+5x^4-x^3-3x^2-3=-2x^2-x+9\)
\(h\left(x\right)-\left(5x^4-5x^4\right)+\left(x^2-3x^2\right)-x^3-2x+\left(6-3\right)=-2x^2-x+9\)
\(h\left(x\right)-0-2x^2-x^3-2x+3=-2x^2-x+9\)
\(h\left(x\right)-x^3-2x^2-2x+3=-2x^2-x+9\)
\(h\left(x\right)+\left(-x^3-2x^2-2x+3\right)=-2x^2-x+9\)
\(h\left(x\right)=\left(-2x^2-x+9\right)-\left(-x^3-2x^2-2x+3\right)\)
\(h\left(x\right)=-2x^2-x+9+x^3+2x^2+2x-3\)
\(h\left(x\right)=\left(-2x^2+2x^2\right)-\left(x-2x\right)+\left(9-3\right)+x^3\)
\(h\left(x\right)=0+x+6+x^3\)
\(h\left(x\right)=x^3+x+6\)
d) Ta có : h(x) + f(x) - g(x) = -2x2 - x + 9
<=> h(x) = -2x2 - x + 9 - f(x) + g(x)
<=> h(x) = -2x2 - x + 9 - x2 + 2x + 5x4 - 6 + x3 - 5x4 + 3x2 - 3
<=> h(x) = x3 + x.
Vậy h(x) = x3 + x
Bài 1: M+N=(2xy2-3x+12)+(-xy2-3)
= 2xy2-3x+12-xy2-3
=(2xy2-xy2)-3x+(12-3)
=xy2-3x+9
Bài 2:
a) Sắp xếp các đa thức theo lũy thừa giảm dần của biến
f(x)=-5x4+x2-2x+6
g(x)=-5x4+x3+3x2-3
b) f(x)+g(x)=(-5x4+x2-2x+6)+(-5x4+x3+3x2-3)
= -5x4+x2-2x+6-5x4+x3+3x2-3
=(-5x4-5x4)+(x2+3x2)-2x+x3-3
=-10x4+4x2-2x+x3-3
Vậy f(x)+g(x)=-10x4+4x2-2x+x3-3
Thế thôi nha mình còn phải học. Chúc bạn làm tốt!!!!!!!!!!!!!
a) F(x) = 3x2 -2x-x4-2x2-4x4+6
= (-x4 -4x4) + ( 3x2 -2x2) -2x+6
= -5x4 + x2 -2x +6
G(x) = -5x4 + ( -x3 +2x3) +( 2x2 +x2) -3
= -5x4+ x3+ 3x2-3
huhuhulàm gần xong r còn câu c đang làm viêt dấu suy ra mà ai dé bấm lộn vô chỗ vẽ hình ...nên nhấn hủy bỏ...âu bt v... là xóa hêtviết trên máy lâu ắm lun
c) Thay \(x=1\) vào f(x) ta có :
\(f\left(x\right)=1^2-2\cdot1-5\cdot1^2+6\)
\(=1-2-5+6\\ =0\)
Vậy x=1 là nghiệm của đa thức f(x)
d)
\(h\left(x\right)=0\\ \Leftrightarrow2x+1=0\\ \Leftrightarrow2x=-1\\ \Leftrightarrow x=-\dfrac{1}{2}\)
\(p\left(x\right)=0\\ \Leftrightarrow x^2-x=0\\ \Leftrightarrow x\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)