Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M+N=(2xy2-3x+12)+(-xy2-3)
=2xy2-3x+12+(-xy2)-3
=(2xy2-xy2)+(-3x)+(12-3)
=1xy2-3x+9
bài 2:
a)f(x)=-5x4+x2-2x+6
g(x)=-5x4+x3+3x2-3
b)f(x)+g(x)=(-54+x2-2x+6)+(-5x4+x3+3x2-3)
=-5x4+x2-2x+6+(-5x4)+x3+3x2-3
=(-5x4-5x4)+x3+(x2+3x2)+(-2x)+(6-3)
=-10x4+x3+4x2-2x+2
f(x)-g(x)=(-5x4+x2-2x+6)-(-5x4+x3+3x2-3)
=-5x4+x2-2x+6-(+5x4)-x3-3x2+3
=(-5x4+5x4)+(-x3)+(x2-3x2)+(-2x)+(6+3)
=-x3-2x2-2x+9
a) \(f\left(x\right)=x^2-2x-5x^4+6\)
\(=-5x^4+x^2-2x+6\)
\(g\left(x\right)=x^3-5x^4+3x^2-3\)
\(=-5x^4+x^3+3x^2-3\)
b) \(f\left(x\right)+g\left(x\right)=-5x^4+x^2-2x+6-5x^4+x^3+3x^2-3\)
\(=-10x^4+4x^2+x^3-2x+3\)
\(f\left(x\right)-g\left(x\right)=-5x^4+x^2-2x+6+5x^4-x^3-3x^2+3\)
\(=-2x^2-x^3-2x+9\)
c) Thay x = 1 vào f(x) ta có:
\(f\left(1\right)=1-2-5+6=0\)
Vậy x = 1 là nghiệm của f(x)
d) \(h\left(x\right)+f\left(x\right)-g\left(x\right)=-2x^2-x+9\)
\(\Rightarrow h\left(x\right)=-2x^2-x+9+g\left(x\right)-f\left(x\right)\)
\(\Rightarrow h\left(x\right)=-2x^2-x+9+2x^2+x^3+2x-9\)
\(\Rightarrow h\left(x\right)=x^3+x\)
e) Ta có: \(x^3+x=0\)
\(\Rightarrow x^2\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy x = 0, x = -1 là nghiệm của H(x)
Bài 1 :
\(M+N\)
\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)
\(=2xy^2-3x+12-xy^2-3\)
\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)
\(=xy^2-3x+9\)
\(h\left(x\right)+f\left(x\right)-g\left(x\right)=-2x^2-x+9\)
\(h\left(x\right)+\left(-5x^4+x^2-2x+6\right)-\left(-5x^4+x^3+3x^2-3\right)=-2x^2-x+9\)
\(h\left(x\right)-5x^4+x^2-2x+6+5x^4-x^3-3x^2-3=-2x^2-x+9\)
\(h\left(x\right)-\left(5x^4-5x^4\right)+\left(x^2-3x^2\right)-x^3-2x+\left(6-3\right)=-2x^2-x+9\)
\(h\left(x\right)-0-2x^2-x^3-2x+3=-2x^2-x+9\)
\(h\left(x\right)-x^3-2x^2-2x+3=-2x^2-x+9\)
\(h\left(x\right)+\left(-x^3-2x^2-2x+3\right)=-2x^2-x+9\)
\(h\left(x\right)=\left(-2x^2-x+9\right)-\left(-x^3-2x^2-2x+3\right)\)
\(h\left(x\right)=-2x^2-x+9+x^3+2x^2+2x-3\)
\(h\left(x\right)=\left(-2x^2+2x^2\right)-\left(x-2x\right)+\left(9-3\right)+x^3\)
\(h\left(x\right)=0+x+6+x^3\)
\(h\left(x\right)=x^3+x+6\)
d) Ta có : h(x) + f(x) - g(x) = -2x2 - x + 9
<=> h(x) = -2x2 - x + 9 - f(x) + g(x)
<=> h(x) = -2x2 - x + 9 - x2 + 2x + 5x4 - 6 + x3 - 5x4 + 3x2 - 3
<=> h(x) = x3 + x.
Vậy h(x) = x3 + x
c) Thay \(x=1\) vào f(x) ta có :
\(f\left(x\right)=1^2-2\cdot1-5\cdot1^2+6\)
\(=1-2-5+6\\ =0\)
Vậy x=1 là nghiệm của đa thức f(x)
d)
\(h\left(x\right)=0\\ \Leftrightarrow2x+1=0\\ \Leftrightarrow2x=-1\\ \Leftrightarrow x=-\dfrac{1}{2}\)
\(p\left(x\right)=0\\ \Leftrightarrow x^2-x=0\\ \Leftrightarrow x\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Bài 1: M+N=(2xy2-3x+12)+(-xy2-3)
= 2xy2-3x+12-xy2-3
=(2xy2-xy2)-3x+(12-3)
=xy2-3x+9
Bài 2:
a) Sắp xếp các đa thức theo lũy thừa giảm dần của biến
f(x)=-5x4+x2-2x+6
g(x)=-5x4+x3+3x2-3
b) f(x)+g(x)=(-5x4+x2-2x+6)+(-5x4+x3+3x2-3)
= -5x4+x2-2x+6-5x4+x3+3x2-3
=(-5x4-5x4)+(x2+3x2)-2x+x3-3
=-10x4+4x2-2x+x3-3
Vậy f(x)+g(x)=-10x4+4x2-2x+x3-3
Thế thôi nha mình còn phải học. Chúc bạn làm tốt!!!!!!!!!!!!!
giải phần d và e lun đi
help