Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Ta có 4x2 - 4x + 3 = (4x2 - 4x + 1) + 2 = (2x - 1)2 + 2 \(\ge\)2 > 0 (đpcm)
b) Ta có y - y2 - 1
= -(y2 - y + 1)
= -(y2 - y + 1/4) - 3/4
= -(y - 1/2)2 - 3/4 \(\le-\frac{3}{4}< 0\)(đpcm)
a) 4x2 - 4x + 3 = ( 4x2 - 4x + 1 ) + 2 = ( 2x - 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )
b) y - y2 - 1 = -( y2 - y + 1/4 ) - 3/4 = -( y - 1/2 ) - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )
\(x^2-4x+8=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4>0\)
Vậy biểu thức \(x^2-4x+8\) luôn dương với mọi x
\(x^2-4x+8\\ =x^2-4x+4+4\\ =\left(x-2\right)^2+4\ge4>0\forall x\)
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)
\(x^2+4x-4=0\Leftrightarrow x^2+4x+4=8\Leftrightarrow\left(x+2\right)^2=8\)
\(\Leftrightarrow x+2=\sqrt{8}\Leftrightarrow x=\sqrt{8}-2\)
Bài 2 đề bn viết thiếu đấu + đó
Ta có M=x2+4xy+5y2-2y+3
=(x2+4xy+4y2)+(y2-2y+1)+2
=(x+2y)2 +(y-1)2+2
Do \(\left(x+2y\right)^2+\left(y-1\right)^2\ge0\Rightarrow M\ge2\)
=> đpcm
a) \(A=x^2+2x+3=x^2+2x+1+2\)
\(=\left(x+1\right)^2+2\ge2\)
Vậy A luôn dương với mọi x
b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+2^2\right)-1\)
\(=-\left(x-2\right)^2-1\le-1\)
Vậy B luôn âm với mọi x
a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)
Vậy x2 +2x+3 luôn dương.
b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)
Vậy -x2 +4x-5 luôn luôn âm.
2. Ta có: P = 2x2 + y2 - 4x - 4y + 10
P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4
P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)4 \(\forall\)x;y
=> P luôn dương với mọi biến x;y
3 Ta có:
(2n + 1)(n2 - 3n - 1) - 2n3 + 1
= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1
= -5n2 - 5n = -5n(n + 1) \(⋮\)5 \(\forall\)n \(\in\)Z
\(4\left(x^2-x+\dfrac{1}{4}\right)-1+3=4\left(x-\dfrac{1}{2}\right)^2+2\)
mà \(4\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow4\left(x-\dfrac{1}{2}\right)^2+2>0\) với mọi x
\(\Rightarrow dpcm\)
\(A=4x^2-4x+3=4\left(x^2-x+\dfrac{1}{4}\right)-1+3=4\left(x-\dfrac{1}{2}\right)^2+2\)
mà \(4\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
ra vừa thôi mà mấy bài đó sử dùng hằng đẳng thức là ra mà cần gì phải hỏi
a. x2-x+1= x2-2.x.1/2+12=(x-1)2\(\ge\)0
b. \(x^2+x+2=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
c. \(-x^2+x-3=-\left(x^2-x+3\right)=-\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{11}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}\ge-\frac{11}{4}\)
\(x^2-4x+8\\ =\left(x-2\right)^2+4\ge4>0\forall x\)