K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2020

a Ta có 4x2 - 4x + 3 = (4x2 - 4x + 1) + 2 = (2x - 1)2 + 2 \(\ge\)2 > 0 (đpcm)

b) Ta có y - y2 - 1 

= -(y2 - y + 1)

= -(y2 - y + 1/4) - 3/4

= -(y - 1/2)2 - 3/4 \(\le-\frac{3}{4}< 0\)(đpcm)

5 tháng 10 2020

a) 4x2 - 4x + 3 = ( 4x2 - 4x + 1 ) + 2 = ( 2x - 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )

b) y - y2 - 1 = -( y2 - y + 1/4 ) - 3/4 = -( y - 1/2 ) - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )

4 tháng 10 2019

2. Ta có: P = 2x2 + y2 - 4x - 4y + 10

P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4

P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)\(\forall\)x;y

=> P luôn dương với mọi biến x;y

3 Ta có:

(2n + 1)(n2 - 3n - 1) - 2n3 + 1

= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1

= -5n2 - 5n = -5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

20 tháng 4 2020

1×2=2

23 tháng 12 2018

\(x^2+4x-4=0\Leftrightarrow x^2+4x+4=8\Leftrightarrow\left(x+2\right)^2=8\)

\(\Leftrightarrow x+2=\sqrt{8}\Leftrightarrow x=\sqrt{8}-2\)

23 tháng 12 2018

Bài 2 đề bn viết thiếu đấu + đó

Ta có M=x2+4xy+5y2-2y+3

=(x2+4xy+4y2)+(y2-2y+1)+2

=(x+2y)2 +(y-1)2+2

Do \(\left(x+2y\right)^2+\left(y-1\right)^2\ge0\Rightarrow M\ge2\)

=> đpcm

1 tháng 8 2016

ra vừa thôi mà mấy bài đó sử dùng hằng đẳng thức là ra mà cần gì phải hỏi

a. x2-x+1= x2-2.x.1/2+12=(x-1)2\(\ge\)0

b. \(x^2+x+2=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

c. \(-x^2+x-3=-\left(x^2-x+3\right)=-\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{11}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}\ge-\frac{11}{4}\)

19 tháng 6 2016

\(A=x\left(x-6\right)+10=x^2-6x+10\)

   \(=\left(x-3\right)^2+1>0\) với mọi x

\(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

    \(=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\) với mọi x;y

2 tháng 8 2019

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

2 tháng 8 2019

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)

25 tháng 5 2017

A = x(x - 6) + 10

A = x2 - 6x + 10

A = x2 - 2.3.x + 32 + 1

A = (x - 3)2 + 1 \(\ge1\)

=> A luôn dương

25 tháng 5 2017

Bạn Kurosaki Akatsu làm ý a đúng rồi đấy!

B = x2 - 2x + 9y2 - 6y + 3

   = (x2 - 2x + 1) + (9y2 - 6y + 1) + 1

   = (x - 1)2 +  [ (3y)2 - 2.3y.1 + 12)] + 1

   = (x - 1)2 + (3y - 1)2 + 1

Vì (x - 1)2 và (3y - 1)luôn lớn hơn hoặc bằng 0 với mọi x, y

=> (x - 1)2 + (3y - 1)2 + 1 > 0 với mọi xy

  Vậy biểu thức luôn dương

   

2 tháng 8 2017

ta có

B=(x^2-2x+1)+[(3y)^2-6y+1]+1

B=(x-1)^2+(3y-1)^2+1

Mả (x-1)^2+(3y_1)^2 luôn luôn >=0

Vậy B mìn =1khi và chỉ khi x=1 va y=1/3

2 tháng 8 2017

À không cần min bạn nhé. Dù sao cũng cảm ơn.

\(B=x^2-2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x,y\)

21 tháng 7 2016

a, Ta có: A=x2+2x+3 =x2+2x+1+2

                  = (x+1)2+2>0

b, B= -(x2-4x+5) = -(x2-4x+4)-1

       = -(x-2)2-1<0

Chúc bạn học tốt!

21 tháng 7 2016

a)x2+2x+3

=x2+2.x.1+12+2

=(x+1)2+2

         Vì (x+1)2\(\ge0\)

   Suy ra:(x+1)2+2\(\ge2\)(đpcm)

b)-x2+4x-5

=-(x2-4x+5)

=-(x2-2.2x+4)-1

=-(x-2)2-1

             Vì -(x-2)2\(\le0\)

     Suy ra -(x-2)2-1\(\le-1\)(đpcm)