K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2019

\(a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\)

Thay vào A , ta có 

\(A=\frac{a^2}{\left(b+c\right)^2-b^2-c^2}\)\(+\frac{b^2}{\left(a+c\right)^2-a^2-c^2}\)\(+\frac{c^2}{\left(a+b\right)^2-a^2-b^2}\)

=> \(A=\frac{a^2}{b^2+2bc+c^2-b^2-c^2}+\frac{b^2}{a^2+2ac+c^2-a^2-c^2}\)\(+\frac{c^2}{a^2+2ab+b^2-a^2-b^2}\)

=> \(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Ta có \(a^3+b^3+c^3-3abc=\left(a^3+b^3\right)+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3ab\)

\(=\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^3-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

mà \(a+b+c=0\Rightarrow a^3+b^3+c^3-3abc=0\)

                                  => \(a^3+b^3+c^3=3abc\)

=> \(A=\frac{3abc}{2abc}=\frac{3}{2}\)

Vậy A ko phụ thuộc vào a,b,c

19 tháng 12 2016

Ta có : a-b-c=0 \(\Rightarrow\)a-b=c ; a-c=b va b-c=a

Hay : \(\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}\)

\(=\frac{a^3+b^3+c^3}{abc}\)

\(=\frac{3abc}{abc}\)

=3 (dpcm)

19 tháng 12 2016

Quy đồng rồi đặt nhân tử là ra nhé

13 tháng 11 2019

Ap dụng hằng đẳng thức.

\(A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{b^2}{\left(a-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(c-a\right)}+\frac{c^2}{\left(c-a\right)\left(b-c\right)}\)

\(=\frac{\left(a+b\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(b+c\right)\left(b-c\right)}{\left(b-c\right)\left(c-a\right)}\)

\(=\frac{a+b}{a-c}+\frac{b+c}{c-a}=\frac{a+b}{a-c}-\frac{b+c}{a-c}=1\left(đpcm\right)\)

11 tháng 12 2017

Với các bài yêu cầu như thế này, em chỉ cần biến đổi, rút gọn biểu thức để giá trị cuối cùng là một hằng số.

a) Câu này có vấn đề.

Cô đặt f(0) = (x-2)2 + 6(x+1)(x-3) - (x-2)(x- 2x - 4) = -22

           f(1) = -28 \(\ne f\left(0\right)\)

Vậy rõ ràng giá trị biểu thức phụ thuộc biến. Em xem lại đề nhé.

b) \(\frac{a}{\left(a-b\right)\left(a-c\right)}+\frac{b}{\left(b-a\right)\left(b-c\right)}+\frac{c}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{-a\left(b-c\right)-b\left(c-a\right)-c\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{-ab+ac-bc+ab-ca+bc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=0\)

Vậy giá trị của biểu thức không phụ thuộc vào biến.

27 tháng 5 2017

Nhân cả 2 vế với a+b+c 

Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0

dễ rồi nhé

27 tháng 5 2017

b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được: 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)

=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)

=>Pmax=3/4 <=> x=y=z=1/3

NV
21 tháng 3 2019

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{ac}+\frac{2}{bc}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{abc}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\) (đpcm)

Do \(a+b+c=0\Rightarrow a+b=-c\)

\(a^3+b^3+c^3=a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(-c\right)\)

\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)+3abc=3abc\)

Vậy \(a^3+b^3+c^3=3abc\)

\(\Rightarrow P=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}=\frac{3abc}{abc}=3\)

5 tháng 2 2020

1) Trước hết ta đi chứng minh BĐT : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)  với \(a,b>0\) (1) 

Thật vậy : BĐT  (1) \(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)  ( luôn đúng )

Vì vậy BĐT (1) đúng.

Áp dụng vào bài toán ta có:

\(\frac{1}{4}\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\right)\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)

                                                                 \(=\frac{1}{4}\cdot\left[2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Vậy ta có điều phải chứng minh !

5 tháng 2 2020

Bài 1 : 

Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\hept{\begin{cases}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\end{cases}}\)

Cộng theo từng vế 

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm)