Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^5=32\equiv1\left(mod31\right)\)
\(\Rightarrow\left(2^5\right)^{400}\equiv1\)( mod 31)
\(\Rightarrow2^{2000}\equiv1\)( mod 31)
\(\Rightarrow2^{2000}\times2^2\equiv2^2\)( mod 31)
\(\Rightarrow2^{2002}\equiv4\)( mod 31)
\(\Rightarrow2^{2002}-4\equiv0\)( mod 31)
iwjdfìewaohdòihódfuhtAao xdem sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssex lko dSVOKJDưgeohqởigie
25 = 32 = 1 (mod 31)
=> (25)400 = 1400 = 1 (mod 31)
=> 22000 = 1 (mod 31)
=> 22000.22 = 22 (mod 31)
=> 22002 = 4 (mod 31)
=> 22002 - 4 = 0 (mod 31)
Vậy...
Đề sai, thử với \(n=0;1;2...\) đều không đúng
Đề đúng phải là: \(A=5^{2n+1}+2^{n+4}+2^{n+1}\)
Ta có: \(25\equiv2\left(mod23\right)\Rightarrow25^n\equiv2^n\left(mod23\right)\)
\(\Rightarrow5^{2n+1}=5.25^n\equiv5.2^n\left(mod23\right)\)
\(\Rightarrow A\equiv\left(5.2^n+2^{n+4}+2^{n+1}\right)\left(mod23\right)\)
Mà \(5.2^n+2^{n+4}+2^{n+1}=5.2^n+16.2^n+2.2^n=23.2^n\equiv0\left(mod23\right)\)
\(\Rightarrow A\equiv0\left(mod23\right)\Rightarrow A⋮23\)
2^1995 - 1 = ( 2^5)^399 = 32^399 -1
Ma 32 dong du vs 1( mod 31 )
=> 32^399 dong du vs 1( mod 31 )
=> 32^399 dong du vs 0( mod 31 )
=> 2^1995 - 1 chia het cho 31 ( dpcm )
Ta có: \(2^{1995}=\left(2^5\right)^{399}=32^{399}⋮32\)
Mà \(32\equiv1\)(mod 31)
\(\Rightarrow2^{1995}\equiv1\)(mod 31)
\(\Rightarrow2^{1995}-1⋮31\)(đpcm)
chtt
các bạn cho mk vài li-ke cho tròn 600 với
ai tích mình mình tích lai liền ak