K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

2^1995 - 1 = ( 2^5)^399 = 32^399 -1

Ma 32 dong du vs 1( mod 31 )

=> 32^399 dong du vs 1( mod 31 )

=> 32^399 dong du vs 0( mod 31 )

=> 2^1995 - 1 chia het cho 31 ( dpcm ) 

21 tháng 5 2018

Ta có: \(2^{1995}=\left(2^5\right)^{399}=32^{399}⋮32\)

Mà \(32\equiv1\)(mod 31)

\(\Rightarrow2^{1995}\equiv1\)(mod 31)

\(\Rightarrow2^{1995}-1⋮31\)(đpcm)

           

15 tháng 10 2015

b;

bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.

.......................................................................3......n=3k và 3k + 1 và 3k+2

c;

bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9

d;tương tự b

e;g;tương tự a

13 tháng 12 2015

Ta có :abcdeg=ab.10000+cd.100+eg

=9999.ab+99.cd+ab+cd+eg

=﴾9999ab+99cd﴿+﴾ab+cd+eg﴿

Vì 9999ab+99cd chia hết cho 11 và ab+cd+eg chia hết cho 11

=>abcdeg chia hết cho 11 

Vậy nếu có ab+cd+egchia hết cho 11 thì abcdeg chia hết cho 11

29 tháng 12 2018

20a20a20a=20a.1001001 chia het cho 7

Ma: (1001001;7)=1

=> 20a chia het cho 7

=> a=3

29 tháng 12 2018

Nhanh nhé mọi người

20 tháng 1 2017

( @_@ ) ( T_T )

16 tháng 10 2019

A = 2+21+22+23+...+260

A = 2+2+2.2+2.2.2+........+2.2.2............2

Vì tất cả các số của tổng A là 2=> A chia hết cho 2

b) A = 2+21+22+23+...+260

   A = 2. ( 1+1+22+23)+ 25 . ( 1+1+22+23)+ ..........+ 256. ( 1+1+22+23)

  A = 2.14+ 25.14+..........+256.14

A= 14. ( 2+ 25+.........+256) A chia hết cho 7 vì 14 chia hêt cho 7

c) A = 2+21+22+23+...+260

   A = 2. ( 1+1+22+23+ 24)+ 26 . ( 1+1+22+23+ 24)+ ..........+ 255. ( 1+1+22+23+ 24)

  A = 2.30+ 26.30+..........+255.30

A= 30. ( 2+ 26+.........+255) A chia hết cho 15 vì 30 chia hết cho 15

15 tháng 4 2015

2^1995=2^5.2^1990=32.2^1990

32 chia 31 dư 1 nên 32.2^1990 chia 31 dư 1

xuy ra 32.2^1990-1 chia hết cho 31 tương đương 2^1995-1 chia hết cho 31

15 tháng 4 2015

25 đồng dư với 1(mod 31)

=>(25)399=21995 đồng dư với 25 đồng dư với 1(mod 31)

=>21995-1 đồng dư với 1-1=0(mod 31)

Vậy 21995 -1 chia hết cho 31(đpcm)

 

9 tháng 3 2018

\(2^5=32\equiv1\left(mod31\right)\)

\(\Rightarrow\left(2^5\right)^{400}\equiv1\)( mod 31)

\(\Rightarrow2^{2000}\equiv1\)( mod 31)

\(\Rightarrow2^{2000}\times2^2\equiv2^2\)( mod 31)

\(\Rightarrow2^{2002}\equiv4\)( mod 31)

\(\Rightarrow2^{2002}-4\equiv0\)( mod 31)

2 tháng 11 2019

iwjdfìewaohdòihódfuhtAao xdem sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssex lko dSVOKJDưgeohqởigie