Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2^1995 - 1 = ( 2^5)^399 = 32^399 -1
Ma 32 dong du vs 1( mod 31 )
=> 32^399 dong du vs 1( mod 31 )
=> 32^399 dong du vs 0( mod 31 )
=> 2^1995 - 1 chia het cho 31 ( dpcm )
Ta có: \(2^{1995}=\left(2^5\right)^{399}=32^{399}⋮32\)
Mà \(32\equiv1\)(mod 31)
\(\Rightarrow2^{1995}\equiv1\)(mod 31)
\(\Rightarrow2^{1995}-1⋮31\)(đpcm)
Ta có ﴾6x+11y﴿ =31﴾x+6y﴿‐25﴾x+7y﴿
Do 6x+11y và 31﴾x+6y﴿ đều chia hết cho 31
=> 25﴾x+7y﴿ chia hết cho 31
Do ﴾25,31﴿=1 ﴾vì 25;31 là hai số nguyên tố cùng nhau﴿
Nên x+7y chia hết cho 31
Vậy ...
1) Xét hiệu:
6 x (a+7b)-(6a+11b)
= 6a+42b-6a-11b
=31b
Vs b thuộc N thì 31b chia hết cho 31
=>6 x (a+7b)-(6a+11b) chia hết cho 31
Mà a+7b chia hết cho 31 nên 6 x (a+7b) chia hết cho 31
=>6a+11b chia hết cho 31
a, Ta co : M= ( 1 +4 + 42 ) + ( 43 + 44 + 45 ) +.......................+ ( 42010 + 42011 +42012 )
M = 1. (1+4+16 ) +43. (1+4+16 ) +.........................+ 42010. ( 1+4 +16
M = 1, 21 + 43. 21 +..............................................+ 42010 .21
M= 21.(1+43+.................................... + 42010 ) CHIA HẾT 21
TƯƠNG TƯ
Giai:A=20+21+22+...+299
A=(1+2+22+23+24)+(25+26+27+28+29)+...+(295+296+297+298+299)
A=(1+2+22+23+24)+25(1+2+22+23+24)+...+295(1+2+22+23+24)
A=31+25.31+...+295.31
A=31(25+210+...+295) chia het cho 31
=>A chia het cho 31
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng
Ta có
A=(1+5+5^2)+(5^3+5^4+5^5)+...+(5^96+5^97+5^98)
=> A=31+5^3(1+5+5^2)+...+5^96(1+5+5^2)
=> A=31+5^3.31+...+5^96.31
=> A=31(1+5^3+..+5^96) CHIA HẾT CHO 31 (tick né)
2^1995=2^5.2^1990=32.2^1990
32 chia 31 dư 1 nên 32.2^1990 chia 31 dư 1
xuy ra 32.2^1990-1 chia hết cho 31 tương đương 2^1995-1 chia hết cho 31
25 đồng dư với 1(mod 31)
=>(25)399=21995 đồng dư với 25 đồng dư với 1(mod 31)
=>21995-1 đồng dư với 1-1=0(mod 31)
Vậy 21995 -1 chia hết cho 31(đpcm)