K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

undefined

22 tháng 11 2021

x2+y2−z22xy−y2+z2−x22yz+z2+x2−y22xz=1x2+y2−z22xy−y2+z2−x22yz+z2+x2−y22xz=1

Tính P = x + y + z

 
14 tháng 2 2018

Ta có:      \(x+y+z=0\)

\(\Leftrightarrow\)  \(\left(x+y+z\right)^2=0\)

\(\Leftrightarrow\)\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow\)\(x^2+y^2+z^2=0\)   (vì  xy + yz + xz =0)

\(\Leftrightarrow\)\(x=y=z=0\)

Vậy      \(S=\left(0-1\right)^{1999}+0^{2003}+\left(0+1\right)^{2006}=0\)

1,

\(x^2+y^2+z^2=xy+yz+zx\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx=0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=2.0=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

<=> x - y = 0

y - z = 0

z - x =0 

<=> x=y

y=z

z=x

<=> x=y=z

23 tháng 8 2017

1)VD:\(X=Y=Z\Leftrightarrow XY+YZ+ZX=X^2+Y^2+Z^2\)

\(\Leftrightarrow X^2+Y^2+Z^2=XY+YZ+ZX\left(1\right)\)

VD:\(X^2+Y^2+Z^2=XY+YZ+ZX\Leftrightarrow2X^2+2Y^2+2Z^2=2XY+2YZ+2ZX\)

\(\Leftrightarrow2X^2+2Y^2+2Z^2-2XY-2YZ-2ZX=0\)

\(\Leftrightarrow\left(X-Y\right)^2+\left(Y-Z\right)^2+\left(Z-X\right)^2=0\left(HĐT\right)\)

\(\Rightarrow X=Y=Z\left(2\right)\)

\(1\&2\Rightarrow X^2+Y^2+Z^2=XY+YZ+ZX\)

\(\Leftrightarrow X=Y=Z\)

2)\(\Rightarrow A+B+C\Rightarrow X=-\left(Y+Z\right)\Rightarrow X^2=\left(Y+Z\right)^2\)

\(\Leftrightarrow X^2=Y^2+2YZ+Z^2\)

\(\Leftrightarrow X^2-Y^2-Z^2=2YZ\)

\(\Leftrightarrow\left(X^2-Y^2-Z^2\right)^2=4Y^2Z^2\)

\(\Leftrightarrow X^4+Y^4+Z^4=2X^2Y^2+2Y^2Z^2+2Z^2X^2\)

\(\Leftrightarrow2\left(X^4+Y^4+Z^2\right)=\left(X^2+Y^2+Z^2\right)^2=A^4\)

\(\Rightarrow X^4+Y^4+Z^4=\frac{A^4}{2}\)

16 tháng 9 2019

2) \(x=y+1\Rightarrow x-y=1\)

\(\Rightarrow\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)

\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)

\(\Leftrightarrow\left(x^4-y^4\right)\left(x^4+y^4\right)=x^8-y^8\)

\(\Leftrightarrow x^8-y^8=x^8-y^8\)(đúng)

Vậy \(\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)(đpcm)

15 tháng 3 2015

ta có (x+y+z)3 = (x+y)3 + [3(x+y)2z + 3(x+y).z2 ]+ z3 = (x3 + 3x2y + 3xy2 + y3 )+ 3 (x+y).z.(x+y+z) + z3

x3 + y3 + z3 + 3xy (x+y) + 3z(x+y) (vì x+y + z = 1)

= 1 + 3(x+y).(xy + z) = 1+ 3(x+y)(xy+z) = 1 

=> x+y = 0 hoặc xy +z = 0

Nếu x+ y = 0 => x=-y và z = 1 => S = x2013 + (-x)2015 + 12017 + 2019 = x2013 - x2015 +2020 (có thể đề là y2013

Nếu xy + z = 0 => z = -xy => x + y -xy - 1 = 0 => x(1-y) -(1-y) = 0 => (x-1)(1-y) = 0 => x = 1 hoặc y = 1

x = 1 => z = -y làm tương tự như trên

* đề nên sửa số mũ của x, y, z đều bằng nhau và bằng số lẻ

22 tháng 11 2016

Bạn Trần thị Loan trả lời sai mất rồi

4 tháng 9 2021

undefined