K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2016

Câu này đề bài có vấn đề nhé.

1. x , y,z > 1 thì không thể có x+ y +z =1.

2. Gỉa sử x, y, x  > 0.  Ví dụ lấy \(x=0,99999999\)\(z=5.10^{-9}\),\(y=5.10^{-9}\)

ta thấy M sẽ rất nhỏ. Khi x càng dần 1, z,y càng dần tới 0 thì M càng nhỏ, nên ko tìm GTNN của M đc.

FZ xem lại em nhé.

Mik ms làm lần đâu sai thì thôi nha :

 Để P nhỏ nhất thì 

 \(y^2+z^2+z^2+x^2+y^2+x^2\)

\(=\left(y^2+x^2+z^2\right)+z^2+x^2+y^2\)

\(=1+x^2+y^2+z^2\ge1\)

4 tháng 8 2016

b làm rõ hơn đc ko

1 tháng 3 2018

b, Gọi biểu thức đề ra là B

=> Theo bđt cô si ta có : \(B\ge3\sqrt[3]{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}\)

=> \(B\ge3\sqrt[3]{2\cdot\frac{x}{y}\cdot2\cdot\frac{y}{z}\cdot2\cdot\frac{z}{x}}=3\sqrt[3]{8}=6\) 

( Chỗ này là thay \(x^2+\frac{1}{y^2}\ge2\sqrt{\frac{x^2}{y^2}}=2\cdot\frac{x}{y}\) và 2 cái kia tương tự vào )

=> Min B=6

1 tháng 3 2018

Theo bđt cô si thì ta có : \(\sqrt{\left(x+y\right)\cdot1}\le\frac{x+y+1}{2}\)

\(\sqrt{\left(z+x\right)\cdot1}\le\frac{z+x+1}{2}\)

\(\sqrt{\left(y+z\right)\cdot1}\le\frac{y+z+1}{2}\)

=> Cộng vế theo vế ta được : \(A\le\frac{2\left(x+y+z\right)+3}{2}=\frac{5}{2}\)

Dấu = xảy ra khi : x+y+z=1 và x+y=1 và y+z=1 và x+z=1

=> \(x=y=z=\frac{1}{3}\)

Vậy ...

25 tháng 4 2020

Áp dụng BĐT Cô-si dạng Engel,ta có :

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=1\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{9}{xy+yz+xz}(1)\)

\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+xz}+\frac{1}{xy+yz+xz}\geq \frac{9}{x^2+y^2+z^2+2(xy+yz+xz)}=\frac{9}{(x+y+z)^2}=9(2)\)

Áp dụng hệ quả quen thuộc của BĐT AM-GM ta có:

\(3(xy+yz+xz)\leq (x+y+z)^2=1\Rightarrow xy+yz+xz\leq \frac{1}{3}\)

\(\Rightarrow \frac{7}{xy+yz+xz}\geq 21(3)\)

Từ \((1);(2);(3)\Rightarrow \frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+xz}\geq 9+21=30\)Vậy $P_{\min}=30$. Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{9}{xy+yz+xz}(1)\)

\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+xz}+\frac{1}{xy+yz+xz}\geq \frac{9}{x^2+y^2+z^2+2(xy+yz+xz)}=\frac{9}{(x+y+z)^2}=9(2)\)

Áp dụng hệ quả quen thuộc của BĐT AM-GM ta có:

\(3(xy+yz+xz)\leq (x+y+z)^2=1\Rightarrow xy+yz+xz\leq \frac{1}{3}\)

\(\Rightarrow \frac{7}{xy+yz+xz}\geq 21(3)\)

Từ \((1);(2);(3)\Rightarrow \frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq \frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+xz}\geq 9+21=30\)Vậy $P_{\min}=30$. Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$

22 tháng 4 2019

\(P=\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\)
\(P=\frac{\left[\left(\frac{x}{\sqrt{x^2+2yz}}\right)^2+\left(\frac{y}{\sqrt{y^2+2xz}}\right)^2+\left(\frac{z}{\sqrt{z^2+2xy}}\right)^2\right]\left[\sqrt{x^2+2yz}^2+\sqrt{y^2+2xz}^2+\sqrt{z^2+2xy}^2\right]}{x^2+2yz+y^2+2xz+z^2+2xy}\)

\(P\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)(Bunyakovski)

Dấu "=" xảy ra <=> \(\frac{x}{x^2+2yz}=\frac{y}{y^2+2xz}=\frac{z}{z^2+2xy}\Leftrightarrow x=y=z\)

Vậy GTNN P=1 <=> x=y=z

22 tháng 4 2019

Ngay ở trên hai cái [...] [...] nhân với nhau ấy, tại nó dài quá